linoyts's picture
linoyts HF Staff
Update app.py
660be5b verified
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
from diffusers.utils import export_to_video, load_video, load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import numpy as np
import imageio
import time
import re
#--- LoRA related: Load LoRAs from JSON file ---
try:
with open('loras.json', 'r') as f:
loras = json.load(f)
except FileNotFoundError:
print("WARNING: loras.json not found. LoRA gallery will be empty or non-functional.")
print("Please create loras.json with entries like: [{'title': 'My LTX LoRA', 'repo': 'user/repo', 'weights': 'lora.safetensors', 'trigger_word': 'my style', 'image': 'url_to_image.jpg'}]")
loras = []
except json.JSONDecodeError:
print("WARNING: loras.json is not valid JSON. LoRA gallery will be empty or non-functional.")
loras = []
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=dtype)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipe.vae, torch_dtype=dtype)
pipe.to(device)
pipe_upsample.to(device)
pipe.vae.enable_tiling()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1280
MAX_NUM_FRAMES = 257
FPS = 30.0
MIN_DIM_SLIDER = 256
TARGET_FIXED_SIDE = 768
last_lora = ""
last_fused=False
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_lora_selection(evt: gr.SelectData):
if not loras or evt.index is None or evt.index >= len(loras):
return gr.update(), None # No update to markdown, no selected index
selected_lora_item = loras[evt.index]
# new_placeholder = f"Type a prompt for {selected_lora_item['title']}" # Not updating placeholders directly
lora_repo = selected_lora_item["repo"]
updated_text = f"### Selected LoRA: [{selected_lora_item['title']}](https://huggingface.co/{lora_repo}) ✨"
if selected_lora_item.get('trigger_word'):
updated_text += f"\nTrigger word: `{selected_lora_item['trigger_word']}`"
return (
# gr.update(placeholder=new_placeholder), # Not changing prompt placeholder
updated_text,
evt.index,
)
def get_huggingface_safetensors_for_ltx(link): # Renamed for clarity
split_link = link.split("/")
if len(split_link) != 2:
raise Exception("Invalid Hugging Face repository link format. Should be 'username/repository_name'.")
print(f"Repository attempted: {link}") # Use the combined link
model_card = ModelCard.load(link) # link is "username/repository_name"
base_model = model_card.data.get("base_model")
print(f"Base model from card: {base_model}")
# Validate model type for LTX
acceptable_models = {"Lightricks/LTX-Video-0.9.7-dev"} # Key line for LTX compatibility
models_to_check = base_model if isinstance(base_model, list) else [base_model]
if not any(str(model).strip() in acceptable_models for model in models_to_check): # Ensure string comparison
raise Exception(f"Not a LoRA for a compatible LTX base model! Expected one of {acceptable_models}, found {models_to_check}")
image_path = None
if model_card.data.get("widget") and isinstance(model_card.data["widget"], list) and len(model_card.data["widget"]) > 0:
image_path = model_card.data["widget"][0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
safetensors_name = None
# Prioritize files common for LoRAs
common_lora_filenames = ["lora.safetensors", "pytorch_lora_weights.safetensors"]
for f_common in common_lora_filenames:
if f"{link}/{f_common}" in list_of_files:
safetensors_name = f_common
break
if not safetensors_name: # Fallback to first .safetensors
for file_path in list_of_files:
filename = file_path.split("/")[-1]
if filename.endswith(".safetensors"):
safetensors_name = filename
break
if not safetensors_name: # If still not found, then raise error
raise Exception("No valid *.safetensors file found in the repository.")
if not image_url: # Fallback image search
for file_path in list_of_files:
filename = file_path.split("/")[-1]
if filename.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
image_url = f"https://huggingface.co/{link}/resolve/main/{filename}"
break
except Exception as e:
print(f"Error accessing repository or finding safetensors: {e}")
raise Exception(f"Could not validate Hugging Face repository '{link}' or find a .safetensors LoRA file.") from e
# split_link[0] is user, split_link[1] is repo_name
return split_link[1], link, safetensors_name, trigger_word, image_url
def check_custom_model_for_ltx(link_input): # Renamed for clarity
print(f"Checking a custom model on: {link_input}")
if not link_input or not isinstance(link_input, str):
raise Exception("Invalid custom LoRA input. Please provide a Hugging Face repository path (e.g., 'username/repo-name') or URL.")
link_to_check = link_input.strip()
if link_to_check.startswith("https://huggingface.co/"):
link_to_check = link_to_check.replace("https://huggingface.co/", "").split("?")[0] # Remove base URL and query params
elif link_to_check.startswith("www.huggingface.co/"):
link_to_check = link_to_check.replace("www.huggingface.co/", "").split("?")[0]
# Basic check for 'user/repo' format
if '/' not in link_to_check or len(link_to_check.split('/')) != 2:
raise Exception("Invalid Hugging Face repository path. Use 'username/repo-name' format.")
return get_huggingface_safetensors_for_ltx(link_to_check)
def add_custom_lora_for_ltx(custom_lora_path_input): # Renamed for clarity
global loras # To modify the global loras list
if custom_lora_path_input:
try:
title, repo_id, weights_filename, trigger_word, image_url = check_custom_model_for_ltx(custom_lora_path_input)
print(f"Loaded custom LoRA: {repo_id}")
# Create HTML card for display
card_html = f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image_url if image_url else 'https://huggingface.co/front/assets/huggingface_logo-noborder.svg'}" alt="{title}" style="width:80px; height:80px; object-fit:cover;" />
<div>
<h4>{title}</h4>
<small>Repo: {repo_id}<br>Weights: {weights_filename}<br>
{"Trigger: <code><b>"+trigger_word+"</code></b>" if trigger_word else "No trigger word found. If one is needed, include it in your prompt."}
</small>
</div>
</div>
</div>
'''
# Check if this LoRA (by repo_id) already exists
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo_id), None)
new_item_data = {
"image": image_url,
"title": title,
"repo": repo_id,
"weights": weights_filename,
"trigger_word": trigger_word,
"custom": True # Mark as custom
}
if existing_item_index is not None:
loras[existing_item_index] = new_item_data # Update existing
else:
loras.append(new_item_data)
existing_item_index = len(loras) - 1
# Update gallery choices
gallery_choices = [(item.get("image", "https://huggingface.co/front/assets/huggingface_logo-noborder.svg"), item["title"]) for item in loras]
return (
gr.update(visible=True, value=card_html),
gr.update(visible=True), # Show remove button
gr.update(choices=gallery_choices, value=None), # Update gallery, deselect
f"Custom LoRA '{title}' added. Select it from the gallery.", # Selected info text
None, # Reset selected_index state
"" # Clear custom LoRA input textbox
)
except Exception as e:
gr.Warning(f"Invalid Custom LoRA: {e}")
return gr.update(visible=True, value=f"<p style='color:red;'>Error adding LoRA: {e}</p>"), gr.update(visible=False), gr.update(), "", None, custom_lora_path_input
else: # No input
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora_for_ltx(): # Renamed for clarity
global loras
# Remove the last added custom LoRA if it's marked (simplistic: assumes one custom at a time or last one)
# A more robust way would be to track the index of the custom LoRA being displayed.
# For now, let's find the *last* custom LoRA and remove it.
custom_lora_indices = [i for i, item in enumerate(loras) if item.get("custom")]
if custom_lora_indices:
loras.pop(custom_lora_indices[-1]) # Remove the last one marked as custom
gallery_choices = [(item.get("image", "https://huggingface.co/front/assets/huggingface_logo-noborder.svg"), item["title"]) for item in loras]
return gr.update(visible=False, value=""), gr.update(visible=False), gr.update(choices=gallery_choices, value=None), "", None, ""
def round_to_nearest_resolution_acceptable_by_vae(height, width):
height = height - (height % pipe.vae_spatial_compression_ratio)
width = width - (width % pipe.vae_spatial_compression_ratio)
return height, width
def calculate_new_dimensions(orig_w, orig_h):
"""Calculates new dimensions maintaining aspect ratio with one side fixed to TARGET_FIXED_SIDE."""
if orig_w == 0 or orig_h == 0: return MIN_DIM_SLIDER, MIN_DIM_SLIDER # Avoid division by zero
if orig_w > orig_h: # Landscape or square
new_w = TARGET_FIXED_SIDE
new_h = int(TARGET_FIXED_SIDE * orig_h / orig_w)
else: # Portrait
new_h = TARGET_FIXED_SIDE
new_w = int(TARGET_FIXED_SIDE * orig_w / orig_h)
# Ensure dimensions are at least MIN_DIM_SLIDER
new_w = max(MIN_DIM_SLIDER, new_w)
new_h = max(MIN_DIM_SLIDER, new_h)
# Ensure divisibility by VAE compression ratio (e.g., 32)
new_h, new_w = round_to_nearest_resolution_acceptable_by_vae(new_h, new_w)
return new_h, new_w
def handle_image_upload_for_dims(image_filepath, current_h, current_w):
if not image_filepath:
return gr.update(value=current_h), gr.update(value=current_w)
try:
img = Image.open(image_filepath)
orig_w, orig_h = img.size
new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
print(f"Error processing image for dimension update: {e}")
return gr.update(value=current_h), gr.update(value=current_w)
def handle_video_upload_for_dims(video_filepath, current_h, current_w):
if not video_filepath:
return gr.update(value=current_h), gr.update(value=current_w)
try:
video_filepath_str = str(video_filepath)
if not os.path.exists(video_filepath_str):
print(f"Video file path does not exist for dimension update: {video_filepath_str}")
return gr.update(value=current_h), gr.update(value=current_w)
orig_w, orig_h = -1, -1
with imageio.get_reader(video_filepath_str) as reader:
meta = reader.get_meta_data()
if 'size' in meta:
orig_w, orig_h = meta['size']
else:
try:
first_frame = reader.get_data(0)
orig_h, orig_w = first_frame.shape[0], first_frame.shape[1]
except Exception as e_frame:
print(f"Could not get video size from metadata or first frame: {e_frame}")
return gr.update(value=current_h), gr.update(value=current_w)
if orig_w == -1 or orig_h == -1:
print(f"Could not determine dimensions for video: {video_filepath_str}")
return gr.update(value=current_h), gr.update(value=current_w)
new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
print(f"Error processing video for dimension update: {e} (Path: {video_filepath}, Type: {type(video_filepath)})")
return gr.update(value=current_h), gr.update(value=current_w)
def update_task_image(): return "image-to-video"
def update_task_text(): return "text-to-video"
def update_task_video(): return "video-to-video"
def get_duration(prompt, negative_prompt, image, video, height, width, mode, steps, num_frames,
frames_to_use, seed, randomize_seed, guidance_scale, duration_input, improve_texture,
# New LoRA params
selected_lora_index, lora_scale_value,
progress):
if duration_input > 7:
return 95
else:
return 85
@spaces.GPU(duration=get_duration)
def generate(prompt,
negative_prompt,
image,
video,
height,
width,
mode,
steps,
num_frames_slider_val, # Renamed to avoid conflict with internal num_frames
frames_to_use,
seed,
randomize_seed,
guidance_scale,
duration_input,
improve_texture=False,
# New LoRA params
selected_lora_index=None,
lora_scale_value=0.8, # Default LoRA scale
progress=gr.Progress(track_tqdm=True)):
effective_prompt = prompt
global last_fused, last_lora
# --- LoRA Handling ---
# Unload any existing LoRAs from main pipes first to prevent conflicts
if selected_lora_index is not None and 0 <= selected_lora_index < len(loras):
selected_lora_data = loras[selected_lora_index]
lora_repo_id = selected_lora_data["repo"]
lora_weights_name = selected_lora_data.get("weights", None)
lora_trigger = selected_lora_data.get("trigger_word", "")
print("Last LoRA: ", last_lora)
print("Current LoRA: ", lora_repo_id)
print("Last fused: ", last_fused)
print(f"Selected LoRA: {selected_lora_data['title']} from {lora_repo_id}")
if last_lora != lora_repo_id:
if(last_fused):
with calculateDuration("Unloading previous LoRAs"):
pipe.unfuse_lora()
print("Previous LoRAs unloaded if any.")
with calculateDuration(f"Loading LoRA weights for {selected_lora_data['title']}"):
pipe.load_lora_weights(
lora_repo_id,
weight_name=lora_weights_name,
adapter_name="active_lora"
)
#pipe.set_adapters(["active_lora"], adapter_weights=[lora_scale_value])
pipe.fuse_lora(adapter_names=["active_lora"],lora_scale=lora_scale_value)
pipe.unload_lora_weights()
print(f"LoRA loaded into main pipe with scale {lora_scale_value}")
last_fused = True
last_lora = lora_repo_id
if lora_trigger:
print(f"Applying trigger word: {lora_trigger}")
if selected_lora_data.get("trigger_position") == "prepend":
effective_prompt = f"{lora_trigger} {prompt}"
else: # Default to append or if not specified
effective_prompt = f"{prompt} {lora_trigger}"
else:
print("No LoRA selected or invalid index.")
# --- End LoRA Handling ---
if randomize_seed:
seed = random.randint(0, MAX_SEED)
target_frames_ideal = duration_input * FPS
target_frames_rounded = round(target_frames_ideal)
if target_frames_rounded < 1: target_frames_rounded = 1
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
actual_num_frames = int(n_val * 8 + 1)
actual_num_frames = max(9, actual_num_frames)
num_frames = min(MAX_NUM_FRAMES, actual_num_frames) # This num_frames is used by the pipe
if mode == "video-to-video" and (video is not None):
loaded_video_frames = load_video(video)[:frames_to_use]
condition_input_video = True
width, height = loaded_video_frames[0].size
# steps = 4 # This was hardcoded, let user control steps
elif mode == "image-to-video" and (image is not None):
loaded_video_frames = [load_image(image)]
width, height = loaded_video_frames[0].size
condition_input_video = True
else: # text-to-video
condition_input_video=False
loaded_video_frames = None # No video frames for pure t2v
if condition_input_video and loaded_video_frames:
condition1 = LTXVideoCondition(video=loaded_video_frames, frame_index=0)
else:
condition1 = None
expected_height, expected_width = height, width
downscale_factor = 2 / 3
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
#timesteps_first_pass = [1000, 993, 987, 981, 975, 909, 725]
#timesteps_second_pass = [1000, 909, 725, 421]
#if steps == 8:
#timesteps_first_pass = [1000, 993, 987, 981, 975, 909, 725, 0.03]
# timesteps_second_pass = [1000, 909, 725, 421, 0]
# elif 7 < steps < 8: # Non-integer steps could be an issue for these pre-defined timesteps
#timesteps_first_pass = None
# timesteps_second_pass = None
with calculateDuration("video generation"):
latents = pipe(
conditions=condition1,
prompt=effective_prompt, # Use prompt with trigger word
negative_prompt=negative_prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
num_inference_steps=steps,
decode_timestep=0.05,
decode_noise_scale=0.025,
#timesteps=timesteps_first_pass,
image_cond_noise_scale=0.025,
guidance_rescale=0.7,
guidance_scale=guidance_scale,
generator=torch.Generator(device=device).manual_seed(seed),
output_type="latent",
).frames
final_video_frames_np = None # Initialize
if improve_texture:
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2 # These are internal, not user-facing W/H
with calculateDuration("Latent upscaling"):
upscaled_latents = pipe_upsample(
latents=latents,
adain_factor=1.0,
output_type="latent"
).frames
with calculateDuration("Denoising upscaled video"):
final_video_frames_np = pipe( # Using main pipe for denoising
conditions=condition1, # Re-pass condition if applicable
prompt=effective_prompt,
negative_prompt=negative_prompt,
width=upscaled_width, # Use upscaled dimensions for this pass
height=upscaled_height,
num_frames=num_frames,
guidance_scale=guidance_scale,
denoise_strength=0.4,
#timesteps=timesteps_second_pass,
num_inference_steps=10, # Or make this configurable
latents=upscaled_latents,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.025,
guidance_rescale=0.7,
generator=torch.Generator(device=device).manual_seed(seed),
output_type="np",
).frames[0]
else: # No texture improvement, just upscale latents and decode
with calculateDuration("Latent upscaling and decoding (no improve_texture)"):
final_video_frames_np = pipe_upsample(
latents=latents,
output_type="np" # Decode directly
).frames[0]
# Video saving
video_uint8_frames = [(frame * 255).astype(np.uint8) for frame in final_video_frames_np]
output_filename = "output.mp4"
with calculateDuration("Saving video to mp4"):
with imageio.get_writer(output_filename, fps=FPS, quality=8, macro_block_size=1) as writer: # Removed bitrate=None
for frame_idx, frame_data in enumerate(video_uint8_frames):
progress((frame_idx + 1) / len(video_uint8_frames), desc="Encoding video frames...")
writer.append_data(frame_data)
return output_filename, seed # Return seed for display
# --- Gradio UI ---
css="""
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#col-container { margin: 0 auto; max-width: 1000px; } /* Increased max-width for gallery */
#gallery .grid-wrap{height: 20vh !important; max-height: 250px !important;}
.custom_lora_card { border: 1px solid #e0e0e0; border-radius: 8px; padding: 10px; margin-top: 10px; background-color: #f9f9f9; }
.card_internal { display: flex; align-items: center; }
.card_internal img { margin-right: 1em; border-radius: 4px; }
.card_internal div h4 { margin-bottom: 0.2em; }
.card_internal div small { font-size: 0.9em; color: #555; }
#lora_list_link { font-size: 90%; background: var(--block-background-fill); padding: 0.5em 1em; border-radius: 8px; display:inline-block; margin-top:10px;}
"""
with gr.Blocks(css=css, theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Lexend Deca"), "sans-serif"])) as demo:
# gr.Markdown("# LTX Video 0.9.7 Distilled with LoRA Explorer")
# gr.Markdown("Fast high quality video generation with custom LoRA support. [Model](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-distilled.safetensors) [GitHub](https://github.com/Lightricks/LTX-Video)")
title = gr.HTML(
"""<h1><img src="https://huggingface.co/spaces/linoyts/LTXV-lora-the-explorer/resolve/main/Group%20588.png" alt="LoRA"> LTX Video LoRA the Explorer</h1>""",
elem_id="title",
)
gr.Markdown("[🧨diffusers implementation of LTX Video 0.9.7 Distilled](https://huggingface.co/Lightricks/LTX-Video-0.9.7-distilled) with community trained LoRAs 🤗")
selected_lora_index_state = gr.State(None)
with gr.Row():
with gr.Column(scale=1): # Main controls
with gr.Tab("image-to-video") as image_tab:
with gr.Group():
video_i_hidden = gr.Textbox(label="video_i", visible=False, value=None)
image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "clipboard"]) # Removed webcam
i2v_prompt = gr.Textbox(label="Prompt", value="", lines=3)
i2v_button = gr.Button("Generate Image-to-Video", variant="primary")
with gr.Tab("text-to-video") as text_tab:
with gr.Group():
image_n_hidden = gr.Textbox(label="image_n", visible=False, value=None)
video_n_hidden = gr.Textbox(label="video_n", visible=False, value=None)
t2v_prompt = gr.Textbox(label="Prompt", value="a playfull penguin", lines=3)
t2v_button = gr.Button("Generate Text-to-Video", variant="primary")
with gr.Tab("video-to-video", visible=False) as video_tab:
with gr.Group():
image_v_hidden = gr.Textbox(label="image_v", visible=False, value=None)
video_v2v = gr.Video(label="Input Video")
frames_to_use_slider = gr.Slider(label="Frames to use from input video", minimum=9, maximum=MAX_NUM_FRAMES, value=9, step=8, info="Number of initial frames for conditioning. Must be N*8+1.")
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3)
v2v_button = gr.Button("Generate Video-to-Video", variant="primary")
# duration_slider = gr.Slider(
# label="Video Duration (seconds)", minimum=0.3, maximum=8.5, value=2, step=0.1,
# info="Target video duration (0.3s to 8.5s). Actual frames depend on model constraints (multiple of 8 + 1)."
# )
# improve_texture_checkbox = gr.Checkbox(label="Improve Texture (multi-scale)", value=True, info="Uses a two-pass generation for better quality, but is slower.")
with gr.Column(scale=1): # LoRA Gallery and Output
selected_lora_info_markdown = gr.Markdown("No LoRA selected.")
lora_gallery_display = gr.Gallery(
# Ensure loras is a list of (image_url, title) tuples or similar
value=[(item.get("image", "https://huggingface.co/front/assets/huggingface_logo-noborder.svg"), item["title"]) for item in loras] if loras else [],
label="pick a LoRA",
allow_preview=False,
columns=3, height="auto",
elem_id="gallery"
)
with gr.Group():
custom_lora_input_path = gr.Textbox(label="Add Custom LoRA from Hugging Face", info="Path like 'username/repo-name'", placeholder="e.g., ", visible=False)
#gr.Markdown("[Find LTX-compatible LoRAs on Hugging Face](https://huggingface.co/models?other=base_model:Lightricks/LTX-Video-0.9.7-distilled&sort=trending)", elem_id="lora_list_link")
custom_lora_status_html = gr.HTML(visible=False) # For displaying custom LoRA card
remove_custom_lora_button = gr.Button("Remove Last Added Custom LoRA", visible=False)
with gr.Column(scale=1):
output_video = gr.Video(label="Generated Video", interactive=False)
duration_slider = gr.Slider(
label="Video Duration (seconds)", minimum=0.3, maximum=8.5, value=2, step=0.1,
info="Target video duration (0.3s to 8.5s). Actual frames depend on model constraints (multiple of 8 + 1)."
)
improve_texture_checkbox = gr.Checkbox(label="Improve Texture (multi-scale)", value=True, info="Uses a two-pass generation for better quality, but is slower.")
# gr.DeepLinkButton()
with gr.Accordion("Advanced settings", open=False):
with gr.Row():
lora_scale_slider = gr.Slider(label="LoRA Scale", minimum=0.0, maximum=3, step=0.05, value=1.5, info="Adjusts the influence of the selected LoRA.")
mode_dropdown = gr.Dropdown(["text-to-video", "image-to-video", "video-to-video"], label="Task Mode", value="image-to-video", visible=False) # Keep internal
negative_prompt = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2)
with gr.Row():
seed_number_input = gr.Number(label="Seed", value=0, precision=0)
randomize_seed_checkbox = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
guidance_scale_slider = gr.Slider(label="Guidance Scale (CFG)", minimum=0, maximum=10, value=5.0, step=0.1) # LTX uses low CFG
steps_slider = gr.Slider(label="Inference Steps (Main Pass)", minimum=1, maximum=30, value=25, step=1) # Default steps for LTX
# num_frames_slider = gr.Slider(label="# Frames (Debug - Overridden by Duration)", minimum=9, maximum=MAX_NUM_FRAMES, value=96, step=8, visible=False) # Hidden, as duration controls it
with gr.Row():
height_slider = gr.Slider(label="Target Height", value=512, step=pipe.vae_spatial_compression_ratio, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info=f"Must be divisible by {pipe.vae_spatial_compression_ratio}.")
width_slider = gr.Slider(label="Target Width", value=704, step=pipe.vae_spatial_compression_ratio, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info=f"Must be divisible by {pipe.vae_spatial_compression_ratio}.")
# --- Event Handlers ---
image_i2v.upload(fn=handle_image_upload_for_dims, inputs=[image_i2v, height_slider, width_slider], outputs=[height_slider, width_slider])
video_v2v.upload(fn=handle_video_upload_for_dims, inputs=[video_v2v, height_slider, width_slider], outputs=[height_slider, width_slider])
video_v2v.clear(lambda cur_h, cur_w: (gr.update(value=cur_h), gr.update(value=cur_w)), inputs=[height_slider, width_slider], outputs=[height_slider, width_slider])
image_i2v.clear(lambda cur_h, cur_w: (gr.update(value=cur_h), gr.update(value=cur_w)), inputs=[height_slider, width_slider], outputs=[height_slider, width_slider])
image_tab.select(fn=update_task_image, outputs=[mode_dropdown])
text_tab.select(fn=update_task_text, outputs=[mode_dropdown])
video_tab.select(fn=update_task_video, outputs=[mode_dropdown])
# LoRA Gallery Callbacks
lora_gallery_display.select(
update_lora_selection,
outputs=[selected_lora_info_markdown, selected_lora_index_state]
)
custom_lora_input_path.submit(
add_custom_lora_for_ltx,
inputs=[custom_lora_input_path],
outputs=[custom_lora_status_html, remove_custom_lora_button, lora_gallery_display, selected_lora_info_markdown, selected_lora_index_state, custom_lora_input_path]
)
remove_custom_lora_button.click(
remove_custom_lora_for_ltx,
outputs=[custom_lora_status_html, remove_custom_lora_button, lora_gallery_display, selected_lora_info_markdown, selected_lora_index_state, custom_lora_input_path]
)
# Consolidate inputs for generate function
gen_inputs = [
height_slider, width_slider, mode_dropdown, steps_slider,
gr.Number(value=96, visible=False), # placeholder for num_frames_slider_val, as it's controlled by duration
frames_to_use_slider,
seed_number_input, randomize_seed_checkbox, guidance_scale_slider, duration_slider, improve_texture_checkbox,
selected_lora_index_state, lora_scale_slider
]
t2v_button.click(fn=generate,
inputs=[t2v_prompt, negative_prompt, image_n_hidden, video_n_hidden] + gen_inputs,
outputs=[output_video, seed_number_input]) # Added seed_number_input to outputs
i2v_button.click(fn=generate,
inputs=[i2v_prompt, negative_prompt, image_i2v, video_i_hidden] + gen_inputs,
outputs=[output_video, seed_number_input])
v2v_button.click(fn=generate,
inputs=[v2v_prompt, negative_prompt, image_v_hidden, video_v2v] + gen_inputs,
outputs=[output_video, seed_number_input])
demo.queue(max_size=10).launch()