Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
import random | |
import os | |
# from diffusers import QwenImageEditInpaintPipeline | |
from optimization import optimize_pipeline_ | |
from diffusers.utils import load_image | |
from diffusers import FlowMatchEulerDiscreteScheduler | |
from qwenimage.pipeline_qwenimage_edit_inpaint import QwenImageEditInpaintPipeline | |
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
import math | |
from huggingface_hub import InferenceClient | |
from PIL import Image | |
# Set environment variable for parallel loading | |
# os.environ["HF_ENABLE_PARALLEL_LOADING"] = "YES" | |
# --- Prompt Enhancement using Hugging Face InferenceClient --- | |
def polish_prompt_hf(original_prompt, system_prompt): | |
""" | |
Rewrites the prompt using a Hugging Face InferenceClient. | |
""" | |
# Ensure HF_TOKEN is set | |
api_key = os.environ.get("HF_TOKEN") | |
if not api_key: | |
print("Warning: HF_TOKEN not set. Falling back to original prompt.") | |
return original_prompt | |
try: | |
# Initialize the client | |
client = InferenceClient( | |
provider="cerebras", | |
api_key=api_key, | |
) | |
# Format the messages for the chat completions API | |
messages = [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": original_prompt} | |
] | |
# Call the API | |
completion = client.chat.completions.create( | |
model="Qwen/Qwen3-235B-A22B-Instruct-2507", | |
messages=messages, | |
) | |
# Parse the response | |
result = completion.choices[0].message.content | |
# Try to extract JSON if present | |
if '{"Rewritten"' in result: | |
try: | |
# Clean up the response | |
result = result.replace('```json', '').replace('```', '') | |
result_json = json.loads(result) | |
polished_prompt = result_json.get('Rewritten', result) | |
except: | |
polished_prompt = result | |
else: | |
polished_prompt = result | |
polished_prompt = polished_prompt.strip().replace("\n", " ") | |
return polished_prompt | |
except Exception as e: | |
print(f"Error during API call to Hugging Face: {e}") | |
# Fallback to original prompt if enhancement fails | |
return original_prompt | |
def polish_prompt(prompt, img): | |
""" | |
Main function to polish prompts for image editing using HF inference. | |
""" | |
SYSTEM_PROMPT = ''' | |
# Edit Instruction Rewriter | |
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited. | |
Please strictly follow the rewriting rules below: | |
## 1. General Principles | |
- Keep the rewritten prompt **concise**. Avoid overly long sentences and reduce unnecessary descriptive language. | |
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary. | |
- Keep the core intention of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility. | |
- All added objects or modifications must align with the logic and style of the edited input image's overall scene. | |
## 2. Task Type Handling Rules | |
### 1. Add, Delete, Replace Tasks | |
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar. | |
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example: | |
> Original: "Add an animal" | |
> Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera" | |
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid. | |
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X. | |
### 2. Text Editing Tasks | |
- All text content must be enclosed in English double quotes " ". Do not translate or alter the original language of the text, and do not change the capitalization. | |
- **For text replacement tasks, always use the fixed template:** | |
- Replace "xx" to "yy". | |
- Replace the xx bounding box to "yy". | |
- If the user does not specify text content, infer and add concise text based on the instruction and the input image's context. For example: | |
> Original: "Add a line of text" (poster) | |
> Rewritten: "Add text "LIMITED EDITION" at the top center with slight shadow" | |
- Specify text position, color, and layout in a concise way. | |
### 3. Human Editing Tasks | |
- Maintain the person's core visual consistency (ethnicity, gender, age, hairstyle, expression, outfit, etc.). | |
- If modifying appearance (e.g., clothes, hairstyle), ensure the new element is consistent with the original style. | |
- **For expression changes, they must be natural and subtle, never exaggerated.** | |
- If deletion is not specifically emphasized, the most important subject in the original image (e.g., a person, an animal) should be preserved. | |
- For background change tasks, emphasize maintaining subject consistency at first. | |
- Example: | |
> Original: "Change the person's hat" | |
> Rewritten: "Replace the man's hat with a dark brown beret; keep smile, short hair, and gray jacket unchanged" | |
### 4. Style Transformation or Enhancement Tasks | |
- If a style is specified, describe it concisely with key visual traits. For example: | |
> Original: "Disco style" | |
> Rewritten: "1970s disco: flashing lights, disco ball, mirrored walls, colorful tones" | |
- If the instruction says "use reference style" or "keep current style," analyze the input image, extract main features (color, composition, texture, lighting, art style), and integrate them concisely. | |
- **For coloring tasks, including restoring old photos, always use the fixed template:** "Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration" | |
- If there are other changes, place the style description at the end. | |
## 3. Rationality and Logic Checks | |
- Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" should be logically corrected. | |
- Add missing key information: if position is unspecified, choose a reasonable area based on composition (near subject, empty space, center/edges). | |
# Output Format | |
Return only the rewritten instruction text directly, without JSON formatting or any other wrapper. | |
''' | |
# Note: We're not actually using the image in the HF version, | |
# but keeping the interface consistent | |
full_prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:" | |
return polish_prompt_hf(full_prompt, SYSTEM_PROMPT) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
# --- Helper functions for reuse feature --- | |
def clear_result(): | |
"""Clears the result image.""" | |
return gr.update(value=None) | |
def use_output_as_input(output_image): | |
"""Sets the generated output as the new input image.""" | |
if output_image is not None: | |
return gr.update(value=output_image[1]) | |
return gr.update() | |
# Initialize Qwen Image Edit pipeline | |
# Scheduler configuration for Lightning | |
scheduler_config = { | |
"base_image_seq_len": 256, | |
"base_shift": math.log(3), | |
"invert_sigmas": False, | |
"max_image_seq_len": 8192, | |
"max_shift": math.log(3), | |
"num_train_timesteps": 1000, | |
"shift": 1.0, | |
"shift_terminal": None, | |
"stochastic_sampling": False, | |
"time_shift_type": "exponential", | |
"use_beta_sigmas": False, | |
"use_dynamic_shifting": True, | |
"use_exponential_sigmas": False, | |
"use_karras_sigmas": False, | |
} | |
# Initialize scheduler with Lightning config | |
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) | |
pipe = QwenImageEditInpaintPipeline.from_pretrained("Qwen/Qwen-Image-Edit", scheduler=scheduler, torch_dtype=torch.bfloat16).to("cuda") | |
pipe.load_lora_weights( | |
"lightx2v/Qwen-Image-Lightning", | |
weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors" | |
) | |
pipe.fuse_lora() | |
# pipe.transformer.__class__ = QwenImageTransformer2DModel | |
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
# dummy_mask = load_image("https://github.com/Trgtuan10/Image_storage/blob/main/mask_cat.png?raw=true") | |
# # --- Ahead-of-time compilation --- | |
# optimize_pipeline_(pipe, image=Image.new("RGB", (1328, 1328)), prompt="prompt", mask_image=dummy_mask) | |
def infer(edit_images, | |
prompt, | |
negative_prompt="", | |
seed=42, | |
randomize_seed=False, | |
strength=1.0, | |
num_inference_steps=8, | |
true_cfg_scale=1.0, | |
rewrite_prompt=True, | |
progress=gr.Progress(track_tqdm=True)): | |
image = edit_images["background"] | |
mask = edit_images["layers"][0] | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
if rewrite_prompt: | |
prompt = polish_prompt(prompt, image) | |
print(f"Rewritten Prompt: {prompt}") | |
# Generate image using Qwen pipeline | |
result_image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=image, | |
mask_image=mask, | |
strength=strength, | |
num_inference_steps=num_inference_steps, | |
true_cfg_scale=true_cfg_scale, | |
generator=torch.Generator(device="cuda").manual_seed(seed) | |
).images[0] | |
return [image,result_image], seed | |
examples = [ | |
"change the hat to red", | |
"make the background a beautiful sunset", | |
"replace the object with a flower vase", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 1024px; | |
} | |
#logo-title { | |
text-align: center; | |
} | |
#logo-title img { | |
width: 400px; | |
} | |
#edit_text{margin-top: -62px !important} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(""" | |
<div id="logo-title"> | |
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Edit Logo" width="400" style="display: block; margin: 0 auto;"> | |
<h2 style="font-style: italic;color: #5b47d1;margin-top: -27px !important;margin-left: 133px;">Inpaint</h2> | |
</div> | |
""") | |
gr.Markdown(""" | |
Inpaint images with Qwen Image Edit. [Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. | |
This demo uses the [Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning) LoRA with FA3 for accelerated 8-step inference. | |
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
edit_image = gr.ImageEditor( | |
label='Upload and draw mask for inpainting', | |
type='pil', | |
sources=["upload", "webcam"], | |
image_mode='RGB', | |
layers=False, | |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"), | |
height=600 | |
) | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt (e.g., 'change the hat to red')", | |
container=False, | |
) | |
negative_prompt = gr.Text( | |
label="Negative Prompt", | |
show_label=True, | |
max_lines=1, | |
placeholder="Enter what you don't want (optional)", | |
container=False, | |
value="", | |
visible=False | |
) | |
run_button = gr.Button("Run") | |
with gr.Column(): | |
result = gr.ImageSlider(label="Result", show_label=False, interactive=False) | |
use_as_input_button = gr.Button("🔄 Use as Input Image", visible=False, variant="secondary") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
strength = gr.Slider( | |
label="Strength", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
info="Controls how much the inpainted region should change" | |
) | |
true_cfg_scale = gr.Slider( | |
label="True CFG Scale", | |
minimum=1.0, | |
maximum=10.0, | |
step=0.5, | |
value=1.0, | |
info="Classifier-free guidance scale" | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=8, | |
) | |
rewrite_prompt = gr.Checkbox( | |
label="Enhance prompt (using HF Inference)", | |
value=True | |
) | |
# Event handlers for reuse functionality | |
use_as_input_button.click( | |
fn=use_output_as_input, | |
inputs=[result], | |
outputs=[edit_image], | |
show_api=False | |
) | |
# Main generation pipeline with result clearing and button visibility | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=clear_result, | |
inputs=None, | |
outputs=result, | |
show_api=False | |
).then( | |
fn = infer, | |
inputs = [edit_image, prompt, negative_prompt, seed, randomize_seed, strength, num_inference_steps, true_cfg_scale, rewrite_prompt], | |
outputs = [result, seed] | |
).then( | |
fn=lambda: gr.update(visible=True), | |
inputs=None, | |
outputs=use_as_input_button, | |
show_api=False | |
) | |
demo.launch() |