linoyts's picture
linoyts HF Staff
Update app.py
9c5b32a verified
raw
history blame
5.63 kB
import gradio as gr
import numpy as np
import spaces
import torch
import random
import os
# from diffusers import QwenImageEditInpaintPipeline
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwen_image_edit import QwenImageEditInpaintPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
from PIL import Image
# Set environment variable for parallel loading
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "YES"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Initialize Qwen Image Edit pipeline
pipe = QwenImageEditInpaintPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=torch.bfloat16).to("cuda")
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
# --- Ahead-of-time compilation ---
optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt")
@spaces.GPU(duration=120)
def infer(edit_images, prompt, negative_prompt="", seed=42, randomize_seed=False, strength=1.0, num_inference_steps=35, true_cfg_scale=4.0, progress=gr.Progress(track_tqdm=True)):
image = edit_images["background"]
mask = edit_images["layers"][0]
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Generate image using Qwen pipeline
result_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
mask_image=mask,
strength=strength,
num_inference_steps=num_inference_steps,
true_cfg_scale=true_cfg_scale,
generator=torch.Generator(device="cuda").manual_seed(seed)
).images[0]
return result_image, seed
examples = [
"change the hat to red",
"make the background a beautiful sunset",
"replace the object with a flower vase",
]
css="""
#col-container {
margin: 0 auto;
max-width: 1000px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<div id="logo-title">
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Edit Logo" width="400" style="display: block; margin: 0 auto;">
<h2 style="font-style: italic;color: #5b47d1;margin-top: -27px !important;margin-left: 133px;">Inapint</h2>
</div>
""")
gr.Markdown("""
Inpaint images with Qwen Image Edit. [Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series.
This demo uses the [Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning) LoRA with AoT compilation and FA3 for accelerated 8-step inference.
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.
""")
with gr.Row():
with gr.Column():
edit_image = gr.ImageEditor(
label='Upload and draw mask for inpainting',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
height=600
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt (e.g., 'change the hat to red')",
container=False,
)
negative_prompt = gr.Text(
label="Negative Prompt",
show_label=True,
max_lines=1,
placeholder="Enter what you don't want (optional)",
container=False,
value=""
)
run_button = gr.Button("Run")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
info="Controls how much the inpainted region should change"
)
true_cfg_scale = gr.Slider(
label="True CFG Scale",
minimum=1.0,
maximum=20.0,
step=0.5,
value=4.0,
info="Classifier-free guidance scale"
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=100,
step=1,
value=35,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [edit_image, prompt, negative_prompt, seed, randomize_seed, strength, num_inference_steps, true_cfg_scale],
outputs = [result, seed]
)
demo.launch()