|
import gradio as gr |
|
import torch |
|
import requests |
|
from io import BytesIO |
|
from diffusers import StableDiffusionPipeline |
|
from diffusers import DDIMScheduler |
|
from utils import * |
|
from inversion_utils import * |
|
from torch import autocast, inference_mode |
|
import re |
|
|
|
|
|
def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sd_pipe.scheduler.set_timesteps(num_diffusion_steps) |
|
|
|
|
|
with autocast("cuda"), inference_mode(): |
|
w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float() |
|
|
|
|
|
wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=False, num_inference_steps=num_diffusion_steps) |
|
return wt, zs, wts |
|
|
|
|
|
|
|
def sample(wt, zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1): |
|
|
|
|
|
w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=False, zs=zs[skip:]) |
|
|
|
|
|
with autocast("cuda"), inference_mode(): |
|
x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample |
|
if x0_dec.dim()<4: |
|
x0_dec = x0_dec[None,:,:,:] |
|
img = image_grid(x0_dec) |
|
return img |
|
|
|
|
|
|
|
|
|
sd_model_id = "stabilityai/stable-diffusion-2-base" |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device) |
|
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler") |
|
|
|
|
|
|
|
def get_example(): |
|
case = [ |
|
[ |
|
'Examples/gnochi_mirror.jpeg', |
|
'', |
|
'watercolor painting of a cat sitting next to a mirror', |
|
100, |
|
3.5, |
|
36, |
|
15, |
|
'Examples/gnochi_mirror_reconstrcution.png', |
|
'Examples/gnochi_mirror_watercolor_painting.png', |
|
],] |
|
return case |
|
|
|
|
|
def edit(input_image, |
|
src_prompt ="", |
|
tar_prompt="", |
|
steps=100, |
|
cfg_scale_src = 3.5, |
|
cfg_scale_tar = 15, |
|
skip=36, |
|
seed = 0, |
|
left = 0, |
|
right = 0, |
|
top = 0, |
|
bottom = 0 |
|
): |
|
torch.manual_seed(seed) |
|
|
|
x0 = load_512(input_image, left,right, top, bottom, device) |
|
|
|
|
|
|
|
wt, zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=cfg_scale_src) |
|
|
|
|
|
xT=wts[skip] |
|
etas=1.0 |
|
prompts=[tar_prompt] |
|
cfg_scales=[cfg_scale_tar] |
|
prog_bar=False |
|
zs=zs[skip:] |
|
|
|
|
|
batch_size = len(prompts) |
|
|
|
cfg_scales_tensor = torch.Tensor(cfg_scales).view(-1,1,1,1).to(sd_pipe.device) |
|
|
|
text_embeddings = encode_text(sd_pipe, prompts) |
|
uncond_embedding = encode_text(sd_pipe, [""] * batch_size) |
|
|
|
if etas is None: etas = 0 |
|
if type(etas) in [int, float]: etas = [etas]*sd_pipe.scheduler.num_inference_steps |
|
assert len(etas) == sd_pipe.scheduler.num_inference_steps |
|
timesteps = sd_pipe.scheduler.timesteps.to(sd_pipe.device) |
|
|
|
xt = xT.expand(batch_size, -1, -1, -1) |
|
op = tqdm(timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:] |
|
|
|
t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])} |
|
|
|
for t in op: |
|
idx = t_to_idx[int(t)] |
|
|
|
with torch.no_grad(): |
|
uncond_out = sd_pipe.unet.forward(xt, timestep = t, |
|
encoder_hidden_states = uncond_embedding) |
|
|
|
|
|
if prompts: |
|
with torch.no_grad(): |
|
cond_out = sd_pipe.unet.forward(xt, timestep = t, |
|
encoder_hidden_states = text_embeddings) |
|
|
|
|
|
z = zs[idx] if not zs is None else None |
|
z = z.expand(batch_size, -1, -1, -1) |
|
if prompts: |
|
|
|
noise_pred = uncond_out.sample + cfg_scales_tensor * (cond_out.sample - uncond_out.sample) |
|
else: |
|
noise_pred = uncond_out.sample |
|
|
|
xt = reverse_step(sd_pipe, noise_pred, t, xt, eta = etas[idx], variance_noise = z) |
|
|
|
|
|
with autocast("cuda"), inference_mode(): |
|
x0_dec = sd_pipe.vae.decode(1 / 0.18215 * xt).sample |
|
if x0_dec.dim()<4: |
|
x0_dec = x0_dec[None,:,:,:] |
|
interm_img = image_grid(x0_dec) |
|
yield interm_img |
|
|
|
yield interm_img |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
intro = """ |
|
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;"> |
|
Edit Friendly DDPM Inversion |
|
</h1> |
|
<p style="font-size: 0.9rem; text-align: center; margin: 0rem; line-height: 1.2em; margin-top:1em"> |
|
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">An Edit Friendly DDPM Noise Space: |
|
Inversion and Manipulations </a> |
|
<p/> |
|
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em"> |
|
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. |
|
<a href="https://huggingface.co/spaces/LinoyTsaban/ddpm_sega?duplicate=true"> |
|
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> |
|
<p/>""" |
|
with gr.Blocks() as demo: |
|
gr.HTML(intro) |
|
with gr.Row(): |
|
src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True, placeholder="optional: describe the original image") |
|
tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True, placeholder="optional: describe the target image") |
|
|
|
with gr.Row(): |
|
input_image = gr.Image(label="Input Image", interactive=True) |
|
input_image.style(height=512, width=512) |
|
|
|
|
|
output_image = gr.Image(label=f"Edited Image", interactive=False) |
|
output_image.style(height=512, width=512) |
|
|
|
|
|
with gr.Row(): |
|
|
|
|
|
|
|
|
|
with gr.Column(scale=1, min_width=100): |
|
edit_button = gr.Button("Run") |
|
|
|
|
|
with gr.Accordion("Advanced Options", open=False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
steps = gr.Number(value=100, precision=0, label="Num Diffusion Steps", interactive=True) |
|
cfg_scale_src = gr.Slider(minimum=1, maximum=15, value=3.5, label=f"Source Guidance Scale", interactive=True) |
|
|
|
|
|
skip = gr.Slider(minimum=0, maximum=40, value=36, precision=0, label="Skip Steps", interactive=True) |
|
cfg_scale_tar = gr.Slider(minimum=7, maximum=18,value=15, label=f"Target Guidance Scale", interactive=True) |
|
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True) |
|
|
|
|
|
with gr.Column(): |
|
left = gr.Number(value=0, precision=0, label="Left Shift", interactive=True) |
|
right = gr.Number(value=0, precision=0, label="Right Shift", interactive=True) |
|
top = gr.Number(value=0, precision=0, label="Top Shift", interactive=True) |
|
bottom = gr.Number(value=0, precision=0, label="Bottom Shift", interactive=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
edit_button.click( |
|
fn=edit, |
|
inputs=[input_image, |
|
src_prompt, |
|
tar_prompt, |
|
steps, |
|
cfg_scale_src, |
|
cfg_scale_tar, |
|
skip, |
|
seed, |
|
left, |
|
right, |
|
top, |
|
bottom |
|
], |
|
outputs=[output_image], |
|
) |
|
|
|
|
|
gr.Examples( |
|
label='Examples', |
|
examples=get_example(), |
|
inputs=[input_image, src_prompt, tar_prompt, steps, |
|
cfg_scale_tar, |
|
skip, |
|
cfg_scale_tar, |
|
inverted_image, output_image |
|
], |
|
outputs=[inverted_image,output_image ], |
|
|
|
|
|
) |
|
|
|
|
|
|
|
demo.queue() |
|
demo.launch(share=False) |