Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,774 Bytes
5f364b5 d5087a5 9526215 c103ac7 5f364b5 c103ac7 5f364b5 f4cf641 d5087a5 8268b44 4ce3014 5f364b5 147dad3 4ce3014 b268619 afdfe21 b268619 cade269 f4cf641 c5dbef0 c103ac7 8575388 8268b44 c103ac7 8268b44 1e531a7 9526215 8268b44 9c20768 b268619 33f10c8 b268619 8116465 c5dbef0 4ce3014 42edd4b 4ce3014 8116465 f4cf641 8268b44 f4cf641 8575388 8268b44 f4cf641 8268b44 8575388 f4cf641 b268619 f4cf641 b268619 310cb90 c5dbef0 f4cf641 b268619 8268b44 f4cf641 8268b44 f4cf641 afdfe21 b268619 9526215 d5087a5 9526215 d5087a5 9526215 d5087a5 c5dbef0 9526215 d5087a5 9526215 d5087a5 9526215 2147bd6 d5087a5 c5dbef0 9526215 d5087a5 b268619 d5087a5 9526215 b268619 9526215 d5087a5 9526215 b268619 9526215 b268619 5c774ff b11d0d2 4ce3014 b11d0d2 4ce3014 1b75f51 4ce3014 1b75f51 4ce3014 33f10c8 4ce3014 1b75f51 b268619 8116465 4ce3014 1e531a7 d8ad2ca b268619 d8ad2ca b268619 33f10c8 b268619 9c20768 b268619 d8ad2ca b268619 d8ad2ca b268619 310cb90 9c20768 4ce3014 9c20768 33f10c8 4ce3014 b268619 33f10c8 9526215 33f10c8 9c20768 f4cf641 8268b44 1e531a7 8268b44 12d6cf5 9526215 33f10c8 d5087a5 33f10c8 9526215 d5087a5 9c20768 2147bd6 d5087a5 2147bd6 d5087a5 b268619 afdfe21 5f364b5 9526215 8268b44 1d3a31b 5f364b5 1e531a7 54b40a7 5f364b5 424d422 b15e441 bfc2264 424d422 5f364b5 094c23f 424d422 b268619 5f364b5 c103ac7 b15e441 33f10c8 b15e441 50b49ed d5087a5 188099e d5087a5 8575388 f4cf641 8268b44 4ce3014 8268b44 f4cf641 45c7dd0 b268619 5f364b5 b268619 c103ac7 8268b44 f4cf641 4ce3014 9c20768 4ce3014 b268619 c103ac7 8268b44 4ce3014 b268619 f4cf641 8268b44 b268619 8116465 4ce3014 f4cf641 b268619 c2e2423 094c23f 9c20768 094c23f 5f364b5 d8ad2ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
import torch
from typing import List
from diffusers import AutoencoderKLWan, WanVACEPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
from briarmbg import BriaRMBG
model_id = "Wan-AI/Wan2.1-VACE-14B-diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanVACEPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16).to("cuda")
# Initialize background removal model
rmbg = BriaRMBG.from_pretrained("briaai/RMBG-1.4").to("cuda", dtype=torch.float32)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=2.0)
pipe.load_lora_weights(
"vrgamedevgirl84/Wan14BT2VFusioniX",
weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors",
adapter_name="phantom"
)
# pipe.load_lora_weights(
# "vrgamedevgirl84/Wan14BT2VFusioniX",
# weight_name="OtherLoRa's/DetailEnhancerV1.safetensors", adapter_name="detailer"
# )
# pipe.set_adapters(["phantom","detailer"], adapter_weights=[1, .9])
# pipe.fuse_lora()
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 512
DEFAULT_W_SLIDER_VALUE = 896
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
# Default prompts for different modes - Updated with new mode names
MODE_PROMPTS = {
"Reference": "the playful penguin picks up the green cat eye sunglasses and puts them on",
"First - Last Frame": "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird's feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective.",
"Random Transitions": "Various different characters appear and disappear in a fast transition video showcasting their unique features and personalities. The video is about showcasing different dance styles, with each character performing a distinct dance move. The background is a vibrant, colorful stage with dynamic lighting that changes with each dance style. The camera captures close-ups of the dancers' expressions and movements. Highly dynamic, fast-paced music video, with quick cuts and transitions between characters, cinematic, vibrant colors"
}
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
def remove_alpha_channel(image: Image.Image) -> Image.Image:
"""
Remove alpha channel from PIL Image if it exists.
Args:
image (Image.Image): Input PIL image
Returns:
Image.Image: Image with alpha channel removed (RGB format)
"""
if image.mode in ('RGBA', 'LA'):
# Create a white background
background = Image.new('RGB', image.size, (255, 255, 255))
# Paste the image onto the white background using alpha channel as mask
if image.mode == 'RGBA':
background.paste(image, mask=image.split()[-1]) # Use alpha channel as mask
else: # LA mode
background.paste(image.convert('RGB'), mask=image.split()[-1])
return background
elif image.mode == 'P':
# Convert palette mode to RGB (some palette images have transparency)
if 'transparency' in image.info:
image = image.convert('RGBA')
background = Image.new('RGB', image.size, (255, 255, 255))
background.paste(image, mask=image.split()[-1])
return background
else:
return image.convert('RGB')
elif image.mode != 'RGB':
# Convert any other mode to RGB
return image.convert('RGB')
else:
# Already RGB, return as is
return image
@torch.inference_mode()
def numpy2pytorch(imgs):
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0 # so that 127 must be strictly 0.0
h = h.movedim(-1, 1)
return h
@torch.inference_mode()
def pytorch2numpy(imgs, quant=True):
results = []
for x in imgs:
y = x.movedim(0, -1)
if quant:
y = y * 127.5 + 127.5
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
else:
y = y * 0.5 + 0.5
y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32)
results.append(y)
return results
def resize_without_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
return np.array(resized_image)
@torch.inference_mode()
def run_rmbg(img, sigma=0.0):
"""
Remove background from image using BriaRMBG model.
Args:
img (np.ndarray): Input image as numpy array (H, W, C)
sigma (float): Noise parameter for blending
Returns:
tuple: (result_image, alpha_mask) where result_image is the image with background removed
"""
H, W, C = img.shape
assert C == 3
k = (256.0 / float(H * W)) ** 0.5
feed = resize_without_crop(img, int(64 * round(W * k)), int(64 * round(H * k)))
feed = numpy2pytorch([feed]).to(device="cuda", dtype=torch.float32)
alpha = rmbg(feed)[0][0]
alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear")
alpha = alpha.movedim(1, -1)[0]
alpha = alpha.detach().float().cpu().numpy().clip(0, 1)
result = 127 + (img.astype(np.float32) - 127 + sigma) * alpha
return result.clip(0, 255).astype(np.uint8), alpha
def remove_background_from_image(image: Image.Image) -> Image.Image:
"""
Remove background from PIL Image using RMBG model.
Args:
image (Image.Image): Input PIL image
Returns:
Image.Image: Image with background removed (transparent background)
"""
# Convert PIL to numpy array
img_array = np.array(image)
# Remove background using RMBG
result_array, alpha_mask = run_rmbg(img_array)
# Convert back to PIL with alpha channel
result_image = Image.fromarray(result_array)
# Create RGBA image with alpha mask
if result_image.mode != 'RGBA':
result_image = result_image.convert('RGBA')
# Handle alpha mask dimensions and convert to PIL
# The alpha_mask might have extra dimensions, so squeeze and ensure 2D
alpha_mask_2d = np.squeeze(alpha_mask)
if alpha_mask_2d.ndim > 2:
# If still more than 2D, take the first channel
alpha_mask_2d = alpha_mask_2d[:, :, 0] if alpha_mask_2d.shape[-1] == 1 else alpha_mask_2d[:, :, 0]
# Convert to uint8 and create PIL Image without deprecated mode parameter
alpha_array = (alpha_mask_2d * 255).astype(np.uint8)
alpha_pil = Image.fromarray(alpha_array, 'L')
result_image.putalpha(alpha_pil)
return result_image
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
min_slider_h, max_slider_h,
min_slider_w, max_slider_w,
default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_gallery_upload_for_dims_wan(gallery_images, current_h_val, current_w_val):
if gallery_images is None or len(gallery_images) == 0:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
# Use the first image to calculate dimensions
first_image = gallery_images[0][0]
# Remove alpha channel before calculating dimensions
first_image = remove_alpha_channel(first_image)
new_h, new_w = _calculate_new_dimensions_wan(
first_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
gr.Warning("Error attempting to calculate new dimensions")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
def update_prompt_from_mode(mode):
"""Update the prompt based on the selected mode"""
return MODE_PROMPTS.get(mode, "")
def prepare_video_and_mask_Ref2V(height: int, width: int, num_frames: int):
frames = []
# Ideally, this should be 127.5 to match original code, but they perform computation on numpy arrays
# whereas we are passing PIL images. If you choose to pass numpy arrays, you can set it to 127.5 to
# match the original code.
frames.extend([Image.new("RGB", (width, height), (128, 128, 128))] * (num_frames))
mask_white = Image.new("L", (width, height), 255)
mask = [mask_white] * (num_frames)
return frames, mask
def prepare_video_and_mask_FLF2V(first_img: Image.Image, last_img: Image.Image, height: int, width: int, num_frames: int):
# Remove alpha channels before processing
first_img = remove_alpha_channel(first_img)
last_img = remove_alpha_channel(last_img)
first_img = first_img.resize((width, height))
last_img = last_img.resize((width, height))
frames = []
frames.append(first_img)
# Ideally, this should be 127.5 to match original code, but they perform computation on numpy arrays
# whereas we are passing PIL images. If you choose to pass numpy arrays, you can set it to 127.5 to
# match the original code.
frames.extend([Image.new("RGB", (width, height), (128, 128, 128))] * (num_frames - 2))
frames.append(last_img)
mask_black = Image.new("L", (width, height), 0)
mask_white = Image.new("L", (width, height), 255)
mask = [mask_black, *[mask_white] * (num_frames - 2), mask_black]
return frames, mask
def calculate_random2v_frame_indices(num_images: int, num_frames: int) -> List[int]:
"""
Calculate evenly spaced frame indices for Random2V mode.
Args:
num_images (int): Number of input images
num_frames (int): Total number of frames in the video
Returns:
List[int]: Frame indices where images should be placed
"""
if num_images <= 0:
return []
if num_images == 1:
# Single image goes in the middle
return [num_frames // 2]
if num_images >= num_frames:
# More images than frames, use every frame
return list(range(num_frames))
# Calculate evenly spaced indices
# We want to distribute images across the full duration
indices = []
step = (num_frames - 1) / (num_images - 1)
for i in range(num_images):
frame_idx = int(round(i * step))
# Ensure we don't exceed num_frames - 1
frame_idx = min(frame_idx, num_frames - 1)
indices.append(frame_idx)
# Remove duplicates while preserving order
seen = set()
unique_indices = []
for idx in indices:
if idx not in seen:
seen.add(idx)
unique_indices.append(idx)
return unique_indices
def prepare_video_and_mask_Random2V(images: List[Image.Image], frame_indices: List[int], height: int, width: int, num_frames: int):
# Remove alpha channels from all images before processing
images = [remove_alpha_channel(img) for img in images]
images = [img.resize((width, height)) for img in images]
# Ideally, this should be 127.5 to match original code, but they perform computation on numpy arrays
# whereas we are passing PIL images. If you choose to pass numpy arrays, you can set it to 127.5 to
# match the original code.
frames = [Image.new("RGB", (width, height), (128, 128, 128))] * num_frames
mask_black = Image.new("L", (width, height), 0)
mask_white = Image.new("L", (width, height), 255)
mask = [mask_white] * num_frames
for img, idx in zip(images, frame_indices):
assert idx < num_frames, f"Frame index {idx} exceeds num_frames {num_frames}"
frames[idx] = img
mask[idx] = mask_black
return frames, mask
def get_duration(gallery_images, mode, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed, remove_bg,
progress):
# Add extra time if background removal is enabled
base_duration = 60
if steps > 4 and duration_seconds > 2:
base_duration = 90
elif steps > 4 or duration_seconds > 2:
base_duration = 75
# Add extra time for background removal processing
if mode == "Reference" and remove_bg: # Updated to use new mode name
base_duration += 30
return base_duration
@spaces.GPU(duration=get_duration)
def generate_video(gallery_images, mode, prompt, height, width,
negative_prompt=default_negative_prompt, duration_seconds = 2,
guidance_scale = 1, steps = 4,
seed = 42, randomize_seed = False, remove_bg = False,
progress=gr.Progress(track_tqdm=True)):
"""
Generate a video from gallery images using the selected mode.
Args:
gallery_images (list): List of PIL images from the gallery
mode (str): Processing mode - "Reference", "first - last frame", or "random transitions"
prompt (str): Text prompt describing the desired animation
height (int): Target height for the output video
width (int): Target width for the output video
negative_prompt (str): Negative prompt to avoid unwanted elements
duration_seconds (float): Duration of the generated video in seconds
guidance_scale (float): Controls adherence to the prompt
steps (int): Number of inference steps
seed (int): Random seed for reproducible results
randomize_seed (bool): Whether to use a random seed
remove_bg (bool): Whether to remove background from images (reference mode only)
progress (gr.Progress): Gradio progress tracker
Returns:
tuple: (video_path, current_seed)
"""
if gallery_images is None or len(gallery_images) == 0:
raise gr.Error("Please upload at least one image to the gallery.")
else:
# Process images: remove background if requested (reference mode only), then remove alpha channels
processed_images = []
for img in gallery_images:
image = img[0] # Extract PIL image from gallery format
# Apply background removal only for reference mode if checkbox is checked
if mode == "Reference" and remove_bg: # Updated to use new mode name
image = remove_background_from_image(image)
# Always remove alpha channels to ensure RGB format
image = remove_alpha_channel(image)
processed_images.append(image)
gallery_images = processed_images
if mode == "First - Last Frame" and len(gallery_images) >= 2: # Updated mode name
gallery_images = gallery_images[:2]
elif mode == "First - Last Frame" and len(gallery_images) < 2: # Updated mode name
raise gr.Error("First - Last Frame mode requires at least 2 images, but only {} were supplied.".format(len(gallery_images)))
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
# Process images based on the selected mode
if mode == "First - Last Frame": # Updated mode name
frames, mask = prepare_video_and_mask_FLF2V(
first_img=gallery_images[0],
last_img=gallery_images[1],
height=target_h,
width=target_w,
num_frames=num_frames
)
reference_images = None
elif mode == "Reference": # Updated mode name
frames, mask = prepare_video_and_mask_Ref2V(height=target_h, width=target_w, num_frames=num_frames)
reference_images = gallery_images
else: # mode == "random transitions" # Updated mode name
# Calculate dynamic frame indices based on number of images and frames
frame_indices = calculate_random2v_frame_indices(len(gallery_images), num_frames)
frames, mask = prepare_video_and_mask_Random2V(
images=gallery_images,
frame_indices=frame_indices,
height=target_h,
width=target_w,
num_frames=num_frames
)
reference_images = None
with torch.inference_mode():
output_frames_list = pipe(
video=frames,
mask=mask,
reference_images=reference_images,
prompt=prompt,
negative_prompt=negative_prompt,
height=target_h,
width=target_w,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
return video_path, current_seed
control_modes = """
**3 Control Modes Available:**
- **Reference** Generate a video incorporating elements from input reference images
- **First - Last Frame** Generate a video using first and last frame conditioning defined by input images
- **Random Transitions** Generate a video with intermediate transitions between multiple input images
"""
with gr.Blocks() as demo:
gr.Markdown("# Fast 6 step Wan 2.1 VACE (14B)")
gr.Markdown("Using [**Wan2.1-VACE-14B**](https://huggingface.co/Wan-AI/Wan2.1-VACE-14B-diffusers) + [**👻FusionX Phantom LoRA**](https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX) by [**vrgamedevgirl84**](https://huggingface.co/vrgamedevgirl84) with **🧨diffusers**, for fast video generation with multiple conditions 🏎️")
gr.Markdown(f"{control_modes}")
with gr.Row():
with gr.Column():
with gr.Group():
# Radio button for mode selection with updated names
mode_radio = gr.Radio(
choices=["Reference", "First - Last Frame", "Random Transitions"],
value="reference",
label="Control Mode",
#info="Reference: upload reference images to take elements from | First - Last Frame: upload 1st and last frames| Random Transitions: upload images to be used as frame anchors"
)
# Gallery component for multiple image upload
gallery_component = gr.Gallery(
label="upload 1 or more images",
show_label=True,
elem_id="gallery",
columns=3,
rows=2,
object_fit="contain",
height="auto",
type="pil",
allow_preview=True
)
# Background removal checkbox moved here - right beneath control modes
remove_bg_checkbox = gr.Checkbox(
label="Remove Background",
value=False,
info="removes background from input images, enable to prevent unwanted background elements in the generated video"
)
prompt_input = gr.Textbox(label="Prompt", value=MODE_PROMPTS["Reference"])
duration_seconds_input = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
step=0.1,
value=2.3,
label="Duration (seconds)",
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
with gr.Row():
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
steps_slider = gr.Slider(minimum=1, maximum=10, step=1, value=6, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=5.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
# Function to update checkbox visibility based on mode
def update_bg_removal_visibility(mode):
return gr.update(visible=(mode == "reference")) # Updated to use new mode name
# Update prompt when mode changes
mode_radio.change(
fn=update_prompt_from_mode,
inputs=[mode_radio],
outputs=[prompt_input]
)
# Update background removal checkbox visibility when mode changes
mode_radio.change(
fn=update_bg_removal_visibility,
inputs=[mode_radio],
outputs=[remove_bg_checkbox]
)
# Update dimensions when gallery changes
gallery_component.change(
fn=handle_gallery_upload_for_dims_wan,
inputs=[gallery_component, height_input, width_input],
outputs=[height_input, width_input]
)
ui_inputs = [
gallery_component, mode_radio, prompt_input, height_input, width_input,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox, remove_bg_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
gr.Examples(
examples=[
[["reachy.png", "sunglasses.jpg", "gpu_hat.png"], "reference", "the cute robot is wearing the sunglasses and the hat that reads 'GPU poor', and moves around playfully", 480, 832],
[["flf2v_input_first_frame.png", "flf2v_input_last_frame.png"], "first - last frame", "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird's feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective.", 512, 512],
],
inputs=[gallery_component, mode_radio, prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
)
if __name__ == "__main__":
demo.queue().launch(mcp_server=True) |