Spaces:
Running
Running
File size: 15,467 Bytes
5f364b5 c11c3fe 9526215 c103ac7 5f364b5 c103ac7 5f364b5 f4cf641 c11c3fe 8268b44 5f364b5 147dad3 b268619 afdfe21 b268619 1b75f51 f4cf641 c103ac7 8575388 8268b44 c103ac7 8268b44 1e531a7 9526215 8268b44 b268619 9526215 b268619 8116465 f4cf641 8268b44 f4cf641 8575388 8268b44 f4cf641 8268b44 8575388 f4cf641 b268619 f4cf641 b268619 2b193d5 f4cf641 b268619 8268b44 f4cf641 8268b44 f4cf641 afdfe21 b268619 9526215 c11c3fe 9526215 c11c3fe 9526215 c11c3fe 9526215 c11c3fe 9526215 c11c3fe 9526215 c11c3fe 9526215 c11c3fe b268619 c11c3fe 9526215 b268619 9526215 c11c3fe 9526215 b268619 9526215 b268619 5c774ff b11d0d2 1b75f51 b268619 8116465 1e531a7 d8ad2ca b268619 d8ad2ca b268619 d8ad2ca b268619 d8ad2ca b268619 2b193d5 b268619 9526215 c11c3fe f4cf641 8268b44 1e531a7 8268b44 12d6cf5 9526215 c11c3fe 9526215 b60f9e0 c11c3fe b60f9e0 c11c3fe b268619 afdfe21 5f364b5 9526215 8268b44 1d3a31b 5f364b5 1e531a7 54b40a7 5f364b5 c11c3fe b268619 5f364b5 c103ac7 b268619 c11c3fe b268619 c11c3fe 8575388 f4cf641 8268b44 f4cf641 b268619 5f364b5 b268619 c103ac7 8268b44 b60f9e0 b268619 c11c3fe b268619 f4cf641 b268619 c103ac7 8268b44 b268619 f4cf641 8268b44 b268619 8116465 8268b44 f4cf641 b268619 54b40a7 5f364b5 b60f9e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import torch
from typing import List
from diffusers import AutoencoderKLWan, WanVACEPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
model_id = "Wan-AI/Wan2.1-VACE-14B-diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanVACEPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16).to("cuda")
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=2.0)
pipe.load_lora_weights(
"vrgamedevgirl84/Wan14BT2VFusioniX",
weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors",
adapter_name="phantom"
)
pipe.load_lora_weights(
"vrgamedevgirl84/Wan14BT2VFusioniX",
weight_name="OtherLoRa's/DetailEnhancerV1.safetensors", adapter_name="detailer"
)
pipe.set_adapters(["phantom","detailer"], adapter_weights=[1, .9])
pipe.fuse_lora()
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 512
DEFAULT_W_SLIDER_VALUE = 896
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
# Default prompts for different modes
MODE_PROMPTS = {
"Ref2V": "the playful penguin picks up the green cat eye sunglasses and puts them on",
"FLF2V": "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird's feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective.",
"Random2V": "Various different characters appear and disappear in a fast transition video showcasting their unique features and personalities. The video is about showcasing different dance styles, with each character performing a distinct dance move. The background is a vibrant, colorful stage with dynamic lighting that changes with each dance style. The camera captures close-ups of the dancers' expressions and movements. Highly dynamic, fast-paced music video, with quick cuts and transitions between characters, cinematic, vibrant colors"
}
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
min_slider_h, max_slider_h,
min_slider_w, max_slider_w,
default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_gallery_upload_for_dims_wan(gallery_images, current_h_val, current_w_val):
if gallery_images is None or len(gallery_images) == 0:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
# Use the first image to calculate dimensions
first_image = gallery_images[0][0]
new_h, new_w = _calculate_new_dimensions_wan(
first_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
gr.Warning("Error attempting to calculate new dimensions")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
def update_prompt_from_mode(mode):
"""Update the prompt based on the selected mode"""
return MODE_PROMPTS.get(mode, "")
def prepare_video_and_mask_Ref2V(height: int, width: int, num_frames: int):
frames = []
# Ideally, this should be 127.5 to match original code, but they perform computation on numpy arrays
# whereas we are passing PIL images. If you choose to pass numpy arrays, you can set it to 127.5 to
# match the original code.
frames.extend([Image.new("RGB", (width, height), (128, 128, 128))] * (num_frames))
mask_white = Image.new("L", (width, height), 255)
mask = [mask_white] * (num_frames)
return frames, mask
def prepare_video_and_mask_FLF2V(first_img: Image.Image, last_img: Image.Image, height: int, width: int, num_frames: int):
first_img = first_img.resize((width, height))
last_img = last_img.resize((width, height))
frames = []
frames.append(first_img)
# Ideally, this should be 127.5 to match original code, but they perform computation on numpy arrays
# whereas we are passing PIL images. If you choose to pass numpy arrays, you can set it to 127.5 to
# match the original code.
frames.extend([Image.new("RGB", (width, height), (128, 128, 128))] * (num_frames - 2))
frames.append(last_img)
mask_black = Image.new("L", (width, height), 0)
mask_white = Image.new("L", (width, height), 255)
mask = [mask_black, *[mask_white] * (num_frames - 2), mask_black]
return frames, mask
def prepare_video_and_mask_Random2V(images: List[Image.Image], frame_indices: List[int], height: int, width: int, num_frames: int):
images = [img.resize((width, height)) for img in images]
# Ideally, this should be 127.5 to match original code, but they perform computation on numpy arrays
# whereas we are passing PIL images. If you choose to pass numpy arrays, you can set it to 127.5 to
# match the original code.
frames = [Image.new("RGB", (width, height), (128, 128, 128))] * num_frames
mask_black = Image.new("L", (width, height), 0)
mask_white = Image.new("L", (width, height), 255)
mask = [mask_white] * num_frames
for img, idx in zip(images, frame_indices):
assert idx < num_frames, f"Frame index {idx} exceeds num_frames {num_frames}"
frames[idx] = img
mask[idx] = mask_black
return frames, mask
def get_duration(gallery_images, mode, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed,
progress):
if steps > 4 and duration_seconds > 2:
return 90
elif steps > 4 or duration_seconds > 2:
return 75
else:
return 60
@spaces.GPU(duration=get_duration)
def generate_video(gallery_images, mode, prompt, height, width,
negative_prompt=default_negative_prompt, duration_seconds = 2,
guidance_scale = 1, steps = 4,
seed = 42, randomize_seed = False,
progress=gr.Progress(track_tqdm=True)):
"""
Generate a video from gallery images using the selected mode.
Args:
gallery_images (list): List of PIL images from the gallery
mode (str): Processing mode - "Ref2V", "FLF2V", or "Random2V"
prompt (str): Text prompt describing the desired animation
height (int): Target height for the output video
width (int): Target width for the output video
negative_prompt (str): Negative prompt to avoid unwanted elements
duration_seconds (float): Duration of the generated video in seconds
guidance_scale (float): Controls adherence to the prompt
steps (int): Number of inference steps
seed (int): Random seed for reproducible results
randomize_seed (bool): Whether to use a random seed
progress (gr.Progress): Gradio progress tracker
Returns:
tuple: (video_path, current_seed)
"""
if gallery_images is None or len(gallery_images) == 0:
raise gr.Error("Please upload at least one image to the gallery.")
else:
gallery_images = [img[0] for img in gallery_images]
if mode == "FLF2V" and len(gallery_images) >= 2:
gallery_images = gallery_images[:2]
elif mode == "FLF2V" and len(gallery_images) < 2:
raise gr.Error("FLF2V mode requires at least 2 images, but only {} were supplied.".format(len(gallery_images)))
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
# Process images based on the selected mode
if mode == "FLF2V":
frames, mask = prepare_video_and_mask_FLF2V(
first_img=gallery_images[0],
last_img=gallery_images[1],
height=target_h,
width=target_w,
num_frames=num_frames
)
reference_images = None
elif mode == "Ref2V":
frames, mask = prepare_video_and_mask_Ref2V(height=target_h, width=target_w, num_frames=num_frames)
reference_images = gallery_images
else: # mode == "Random2V"
frames, mask = prepare_video_and_mask_Random2V(
images=gallery_images,
frame_indices=[0,20,40], # todo - generalize
height=target_h,
width=target_w,
num_frames=num_frames
)
reference_images = None
with torch.inference_mode():
output_frames_list = pipe(
video=frames,
mask=mask,
reference_images=reference_images,
prompt=prompt,
negative_prompt=negative_prompt,
height=target_h,
width=target_w,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
return video_path, current_seed
with gr.Blocks() as demo:
gr.Markdown("# Wan 2.1 VACE (14B) with Phantom & Detail Enhancer LoRAs - Multi-Image Gallery")
gr.Markdown("Using [Wan2.1-VACE-14B](https://huggingface.co/Wan-AI/Wan2.1-VACE-14B-diffusers) with Phantom FusionX and Detail Enhancer LoRAs for advanced video generation with multiple conditioning modes.")
with gr.Row():
with gr.Column():
# Gallery component for multiple image upload
gallery_component = gr.Gallery(
label="Upload Images",
show_label=True,
elem_id="gallery",
columns=3,
rows=2,
object_fit="contain",
height="auto",
type="pil",
allow_preview=True
)
# Radio button for mode selection
mode_radio = gr.Radio(
choices=["Ref2V", "FLF2V", "Random2V"],
value="Ref2V",
label="Processing Mode",
info="Ref2V: Reference to Video | FLF2V: First-Last Frame to Video | Random2V: Random frames to Video"
)
prompt_input = gr.Textbox(label="Prompt", value=MODE_PROMPTS["Ref2V"])
duration_seconds_input = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
step=0.1,
value=2,
label="Duration (seconds)",
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
with gr.Row():
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=5.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
with gr.Accordion("Mode Information", open=False):
gr.Markdown("""
**Processing Modes:**
- **Ref2V**: Uses uploaded images as style references for video generation. All frames are generated based on the reference images.
- **FLF2V**: First-Last Frame mode - uses first and last images as keyframes and generates the frames in between (requires exactly 2 images)
- **Random2V**: Places uploaded images at specific frames in the video and generates the rest. Images are distributed evenly across the video duration.
**Note**: VACE pipeline supports advanced conditioning with masks and reference images for more control over generation.
""")
# Update prompt when mode changes
mode_radio.change(
fn=update_prompt_from_mode,
inputs=[mode_radio],
outputs=[prompt_input]
)
# Update dimensions when gallery changes
gallery_component.change(
fn=handle_gallery_upload_for_dims_wan,
inputs=[gallery_component, height_input, width_input],
outputs=[height_input, width_input]
)
ui_inputs = [
gallery_component, mode_radio, prompt_input, height_input, width_input,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
if __name__ == "__main__":
demo.queue().launch(mcp_server=True) |