|
import fetch from 'node-fetch'; |
|
import { setAdditionalHeadersByType } from '../additional-headers.js'; |
|
import { TEXTGEN_TYPES } from '../constants.js'; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
export async function getVllmBatchVector(texts, apiUrl, model, directories) { |
|
const url = new URL(apiUrl); |
|
url.pathname = '/v1/embeddings'; |
|
|
|
const headers = {}; |
|
setAdditionalHeadersByType(headers, TEXTGEN_TYPES.VLLM, apiUrl, directories); |
|
|
|
const response = await fetch(url, { |
|
method: 'POST', |
|
headers: { |
|
'Content-Type': 'application/json', |
|
...headers, |
|
}, |
|
body: JSON.stringify({ input: texts, model }), |
|
}); |
|
|
|
if (!response.ok) { |
|
const responseText = await response.text(); |
|
throw new Error(`VLLM: Failed to get vector for text: ${response.statusText} ${responseText}`); |
|
} |
|
|
|
|
|
const data = await response.json(); |
|
|
|
if (!Array.isArray(data?.data)) { |
|
throw new Error('API response was not an array'); |
|
} |
|
|
|
|
|
data.data.sort((a, b) => a.index - b.index); |
|
|
|
const vectors = data.data.map(x => x.embedding); |
|
return vectors; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
export async function getVllmVector(text, apiUrl, model, directories) { |
|
const vectors = await getVllmBatchVector([text], apiUrl, model, directories); |
|
return vectors[0]; |
|
} |
|
|