liuyuelintop's picture
Upload folder using huggingface_hub
fb856e1 verified
from agents import Agent, WebSearchTool, trace, Runner, gen_trace_id, function_tool
from agents.model_settings import ModelSettings
from pydantic import BaseModel, Field
from dotenv import load_dotenv
import asyncio
import os
import itertools # Needed for loading animation
from typing import Dict
from IPython.display import display, Markdown
load_dotenv(override=True)
# Async loading indicator that runs until the event is set
async def show_loading_indicator(done_event):
for dots in itertools.cycle(['', '.', '..', '...']):
if done_event.is_set():
break
print(f'\rGenerating{dots}', end='', flush=True)
await asyncio.sleep(0.5)
print('\rDone generating! ') # Clear the line when done
def prompt_with_default(prompt_text, default_value=None, cast_type=str):
user_input = input(f"{prompt_text} ")
if user_input.strip() == "":
return default_value
try:
return cast_type(user_input)
except ValueError:
print(f"Invalid input. Using default: {default_value}")
return default_value
def get_user_inputs():
# 1. Novel genre
genre = prompt_with_default("Novel genre (press Enter for default - teen mystery):", "teen mystery")
# 2. General plot
plot = input("\nGeneral plot (Enter for auto-generated plot): ").strip()
if not plot:
plot = "Auto-Generated Plot"
# 3. Title
title = input("\nTitle (Enter for auto-generated title): ").strip()
if not title:
title = "Auto-Generated Title"
# 4. Number of pages
num_pages = prompt_with_default("\nNumber of pages in novel (Enter for default - 90 pages):", 90, int)
num_words = num_pages * 275
# 5. Number of chapters
num_chapters = prompt_with_default("\nNumber of chapters (Enter for default - 15):", 15, int)
# 6. Max AI tokens
while True:
max_tokens_input = input(
"\nMaximum AI tokens to use, after which novel \n"
"generation will fail (about 200,000 tokens for 90): "
).strip()
try:
max_tokens = int(max_tokens_input)
if max_tokens <= 0:
print("Please enter a positive integer.")
continue
if max_tokens > 300000:
print(f"\n⚠️ You entered {max_tokens:,} tokens, which is quite high and may be expensive.")
confirm = input("Are you sure you want to use this value? (Yes or No): ").strip().lower()
if confirm != "yes":
print("Okay, let's try again.\n")
continue # Ask again
break # Valid and confirmed
except ValueError:
print("Please enter a valid integer.")
return genre, title, num_pages, num_words, num_chapters, plot, max_tokens
async def generate_novel(genre, title, num_pages, num_words, num_chapters, plot, max_tokens):
# Print collected inputs for confirmation (optional)
print("\nCOLLECTED NOVEL CONFIGURATION:\n")
print(f"Genre: {genre}")
print(f"Plot: {plot}")
print(f"Title: {title}")
print(f"Pages: {num_pages}")
print(f"Chapters: {num_chapters}")
print(f"Max Tokens: {max_tokens}")
print("\nAwesome, now we'll generate your novel!")
INSTRUCTIONS = f"You are a fiction author assistant. You will use user-provided parameters, \
or default parameters, to generate a creative and engaging novel. \
Do not perform web searches. Focus entirely on imaginative, coherent, and emotionally engaging content. \
Your output should read like a real novel, vivid, descriptive, and character-driven. \
\
If the user input plot is \"Auto-Generated Plot\" then you should generate an interesting plot for the novel \
based on the genre, otherwise use the plot provided by the user. \
\
If the user input title is \"Auto-Generated Title\" then you should generate an interesting title \
based on the genre and plot, otherwise use the title provided by the user. \
\
The genre of the novel is {genre}. The plot of the novel is {plot}. The title of the novel is {title}. \
You should generate a novel that is {num_pages} pages long. Ensure you do not abruptly end the novel \
just to match the specified number of pages. So ensure the story naturally concludes leading up to the end. \
The novel should be broken up into {num_chapters} chapters. Each chapter should develop the characters and \
the story in an interesting and engaging way. \
\
Do not include any markdown or formatting symbols (e.g., ###, ---, **, etc.). \
Use plain text only: start with the title, followed by chapter titles and their respective story content. \
Do not include a conclusion or author notes at the end. End the story when the final chapter ends naturally. \
\
The story should contain approximately {num_words} words to match a target of {num_pages} standard paperback pages. \
Each chapter should contribute proportionally to the total word count. \
Continue generating story content until the target word count is reached or slightly exceeded. \
Do not summarize or compress events to shorten the story."
search_agent = Agent(
name="Novel Generator Agent",
instructions=INSTRUCTIONS,
model="gpt-4o-mini",
model_settings=ModelSettings(
temperature=0.8,
top_p=0.9,
frequency_penalty=0.5,
presence_penalty=0.6,
max_tokens=max_tokens
)
)
message = f"Generate a {genre} novel titled '{title}' with {num_pages} pages."
with trace("Search"):
result = await Runner.run(
search_agent,
message
)
return result.final_output
# Your agent call with loading indicator
async def main():
done_event = asyncio.Event()
loader_task = asyncio.create_task(show_loading_indicator(done_event))
# Run the agent
genre, title, num_pages, num_words, num_chapters, plot, max_tokens = get_user_inputs()
result = await generate_novel(
genre, title, num_pages, num_words, num_chapters, plot, max_tokens
)
# Signal that loading is done
done_event.set()
await loader_task # Let it finish cleanly
# Output result to file
lines = result.strip().splitlines()
generated_title = "untitled_novel"
for line in lines:
if line.strip(): # skip empty lines
generated_title = line.strip()
break
# Sanitize title for filename
filename_safe_title = ''.join(c if c.isalnum() or c in (' ', '_', '-') else '_' for c in generated_title).strip().replace(' ', '_')
output_path = os.path.abspath(f"novel_{filename_safe_title}.txt")
# Save to file
with open(output_path, "w", encoding="utf-8") as f:
f.write(result)
# Show full path
print(f"\n📘 Novel saved to: {output_path}")
if __name__ == "__main__":
asyncio.run(main())