Spaces:
Runtime error
Runtime error
# import gradio as gr | |
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Randeng-Pegasus-523M-Summary-Chinese") | |
# model = AutoModelForSeq2SeqLM.from_pretrained("IDEA-CCNL/Randeng-Pegasus-523M-Summary-Chinese") | |
# def summarize(text): | |
# inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) | |
# summary_ids = model.generate(inputs["input_ids"], max_length=128) | |
# return tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
# demo = gr.Interface(fn=summarize, inputs="text", outputs="text", title="中文文本摘要 Demo") | |
# demo.launch() | |
# import gradio as gr | |
# def greet(): | |
# return "你好,世界!这是你第一个成功运行的 Hugging Face Space 🎉" | |
# demo = gr.Interface(fn=greet, inputs=[], outputs="text") | |
# demo.launch() | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# 强制使用 slow tokenizer,避免 tiktoken/SentencePiece 报错 | |
tokenizer = AutoTokenizer.from_pretrained( | |
"IDEA-CCNL/Randeng-Pegasus-238M-Summary-Chinese", | |
use_fast=False | |
) | |
from transformers import PegasusTokenizer # not PegasusTokenizerFast | |
tokenizer = PegasusTokenizer.from_pretrained("IDEA-CCNL/Randeng-Pegasus-238M-Summary-Chinese") | |
model = AutoModelForSeq2SeqLM.from_pretrained("IDEA-CCNL/Randeng-Pegasus-238M-Summary-Chinese") | |
# 摘要函数 | |
def summarize(text): | |
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True) | |
summary_ids = model.generate(inputs["input_ids"], max_length=64, min_length=20, length_penalty=2.0, num_beams=4) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary | |
# UI | |
demo = gr.Interface( | |
fn=summarize, | |
inputs=gr.Textbox(lines=10, label="请输入中文文章"), | |
outputs=gr.Textbox(label="自动生成的摘要"), | |
title="中文文本摘要 Demo", | |
description="使用 Randeng Pegasus 238M 模型生成简洁摘要" | |
) | |
demo.launch() | |