Spaces:
Running
Running
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| from copy import copy | |
| from ultralytics.models import yolo | |
| from ultralytics.nn.tasks import PoseModel | |
| from ultralytics.utils import DEFAULT_CFG, LOGGER | |
| from ultralytics.utils.plotting import plot_images, plot_results | |
| # BaseTrainer python usage | |
| class PoseTrainer(yolo.detect.DetectionTrainer): | |
| def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
| """Initialize a PoseTrainer object with specified configurations and overrides.""" | |
| if overrides is None: | |
| overrides = {} | |
| overrides['task'] = 'pose' | |
| super().__init__(cfg, overrides, _callbacks) | |
| if isinstance(self.args.device, str) and self.args.device.lower() == 'mps': | |
| LOGGER.warning("WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. " | |
| 'See https://github.com/ultralytics/ultralytics/issues/4031.') | |
| def get_model(self, cfg=None, weights=None, verbose=True): | |
| """Get pose estimation model with specified configuration and weights.""" | |
| model = PoseModel(cfg, ch=3, nc=self.data['nc'], data_kpt_shape=self.data['kpt_shape'], verbose=verbose) | |
| if weights: | |
| model.load(weights) | |
| return model | |
| def set_model_attributes(self): | |
| """Sets keypoints shape attribute of PoseModel.""" | |
| super().set_model_attributes() | |
| self.model.kpt_shape = self.data['kpt_shape'] | |
| def get_validator(self): | |
| """Returns an instance of the PoseValidator class for validation.""" | |
| self.loss_names = 'box_loss', 'pose_loss', 'kobj_loss', 'cls_loss', 'dfl_loss' | |
| return yolo.pose.PoseValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) | |
| def plot_training_samples(self, batch, ni): | |
| """Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints.""" | |
| images = batch['img'] | |
| kpts = batch['keypoints'] | |
| cls = batch['cls'].squeeze(-1) | |
| bboxes = batch['bboxes'] | |
| paths = batch['im_file'] | |
| batch_idx = batch['batch_idx'] | |
| plot_images(images, | |
| batch_idx, | |
| cls, | |
| bboxes, | |
| kpts=kpts, | |
| paths=paths, | |
| fname=self.save_dir / f'train_batch{ni}.jpg', | |
| on_plot=self.on_plot) | |
| def plot_metrics(self): | |
| """Plots training/val metrics.""" | |
| plot_results(file=self.csv, pose=True, on_plot=self.on_plot) # save results.png | |
| def train(cfg=DEFAULT_CFG, use_python=False): | |
| """Train the YOLO model on the given data and device.""" | |
| model = cfg.model or 'yolov8n-pose.yaml' | |
| data = cfg.data or 'coco8-pose.yaml' | |
| device = cfg.device if cfg.device is not None else '' | |
| args = dict(model=model, data=data, device=device) | |
| if use_python: | |
| from ultralytics import YOLO | |
| YOLO(model).train(**args) | |
| else: | |
| trainer = PoseTrainer(overrides=args) | |
| trainer.train() | |
| if __name__ == '__main__': | |
| train() | |