Spaces:
Running
Running
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| from pathlib import Path | |
| import numpy as np | |
| import torch | |
| from ultralytics.models.yolo.detect import DetectionValidator | |
| from ultralytics.utils import DEFAULT_CFG, LOGGER, ops | |
| from ultralytics.utils.checks import check_requirements | |
| from ultralytics.utils.metrics import OKS_SIGMA, PoseMetrics, box_iou, kpt_iou | |
| from ultralytics.utils.plotting import output_to_target, plot_images | |
| class PoseValidator(DetectionValidator): | |
| def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): | |
| """Initialize a 'PoseValidator' object with custom parameters and assigned attributes.""" | |
| super().__init__(dataloader, save_dir, pbar, args, _callbacks) | |
| self.args.task = 'pose' | |
| self.metrics = PoseMetrics(save_dir=self.save_dir, on_plot=self.on_plot) | |
| if isinstance(self.args.device, str) and self.args.device.lower() == 'mps': | |
| LOGGER.warning("WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. " | |
| 'See https://github.com/ultralytics/ultralytics/issues/4031.') | |
| def preprocess(self, batch): | |
| """Preprocesses the batch by converting the 'keypoints' data into a float and moving it to the device.""" | |
| batch = super().preprocess(batch) | |
| batch['keypoints'] = batch['keypoints'].to(self.device).float() | |
| return batch | |
| def get_desc(self): | |
| """Returns description of evaluation metrics in string format.""" | |
| return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Pose(P', | |
| 'R', 'mAP50', 'mAP50-95)') | |
| def postprocess(self, preds): | |
| """Apply non-maximum suppression and return detections with high confidence scores.""" | |
| return ops.non_max_suppression(preds, | |
| self.args.conf, | |
| self.args.iou, | |
| labels=self.lb, | |
| multi_label=True, | |
| agnostic=self.args.single_cls, | |
| max_det=self.args.max_det, | |
| nc=self.nc) | |
| def init_metrics(self, model): | |
| """Initiate pose estimation metrics for YOLO model.""" | |
| super().init_metrics(model) | |
| self.kpt_shape = self.data['kpt_shape'] | |
| is_pose = self.kpt_shape == [17, 3] | |
| nkpt = self.kpt_shape[0] | |
| self.sigma = OKS_SIGMA if is_pose else np.ones(nkpt) / nkpt | |
| def update_metrics(self, preds, batch): | |
| """Metrics.""" | |
| for si, pred in enumerate(preds): | |
| idx = batch['batch_idx'] == si | |
| cls = batch['cls'][idx] | |
| bbox = batch['bboxes'][idx] | |
| kpts = batch['keypoints'][idx] | |
| nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions | |
| nk = kpts.shape[1] # number of keypoints | |
| shape = batch['ori_shape'][si] | |
| correct_kpts = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init | |
| correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init | |
| self.seen += 1 | |
| if npr == 0: | |
| if nl: | |
| self.stats.append((correct_bboxes, correct_kpts, *torch.zeros( | |
| (2, 0), device=self.device), cls.squeeze(-1))) | |
| if self.args.plots: | |
| self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1)) | |
| continue | |
| # Predictions | |
| if self.args.single_cls: | |
| pred[:, 5] = 0 | |
| predn = pred.clone() | |
| ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape, | |
| ratio_pad=batch['ratio_pad'][si]) # native-space pred | |
| pred_kpts = predn[:, 6:].view(npr, nk, -1) | |
| ops.scale_coords(batch['img'][si].shape[1:], pred_kpts, shape, ratio_pad=batch['ratio_pad'][si]) | |
| # Evaluate | |
| if nl: | |
| height, width = batch['img'].shape[2:] | |
| tbox = ops.xywh2xyxy(bbox) * torch.tensor( | |
| (width, height, width, height), device=self.device) # target boxes | |
| ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape, | |
| ratio_pad=batch['ratio_pad'][si]) # native-space labels | |
| tkpts = kpts.clone() | |
| tkpts[..., 0] *= width | |
| tkpts[..., 1] *= height | |
| tkpts = ops.scale_coords(batch['img'][si].shape[1:], tkpts, shape, ratio_pad=batch['ratio_pad'][si]) | |
| labelsn = torch.cat((cls, tbox), 1) # native-space labels | |
| correct_bboxes = self._process_batch(predn[:, :6], labelsn) | |
| correct_kpts = self._process_batch(predn[:, :6], labelsn, pred_kpts, tkpts) | |
| if self.args.plots: | |
| self.confusion_matrix.process_batch(predn, labelsn) | |
| # Append correct_masks, correct_boxes, pconf, pcls, tcls | |
| self.stats.append((correct_bboxes, correct_kpts, pred[:, 4], pred[:, 5], cls.squeeze(-1))) | |
| # Save | |
| if self.args.save_json: | |
| self.pred_to_json(predn, batch['im_file'][si]) | |
| # if self.args.save_txt: | |
| # save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') | |
| def _process_batch(self, detections, labels, pred_kpts=None, gt_kpts=None): | |
| """ | |
| Return correct prediction matrix | |
| Arguments: | |
| detections (array[N, 6]), x1, y1, x2, y2, conf, class | |
| labels (array[M, 5]), class, x1, y1, x2, y2 | |
| pred_kpts (array[N, 51]), 51 = 17 * 3 | |
| gt_kpts (array[N, 51]) | |
| Returns: | |
| correct (array[N, 10]), for 10 IoU levels | |
| """ | |
| if pred_kpts is not None and gt_kpts is not None: | |
| # `0.53` is from https://github.com/jin-s13/xtcocoapi/blob/master/xtcocotools/cocoeval.py#L384 | |
| area = ops.xyxy2xywh(labels[:, 1:])[:, 2:].prod(1) * 0.53 | |
| iou = kpt_iou(gt_kpts, pred_kpts, sigma=self.sigma, area=area) | |
| else: # boxes | |
| iou = box_iou(labels[:, 1:], detections[:, :4]) | |
| correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool) | |
| correct_class = labels[:, 0:1] == detections[:, 5] | |
| for i in range(len(self.iouv)): | |
| x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match | |
| if x[0].shape[0]: | |
| matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), | |
| 1).cpu().numpy() # [label, detect, iou] | |
| if x[0].shape[0] > 1: | |
| matches = matches[matches[:, 2].argsort()[::-1]] | |
| matches = matches[np.unique(matches[:, 1], return_index=True)[1]] | |
| # matches = matches[matches[:, 2].argsort()[::-1]] | |
| matches = matches[np.unique(matches[:, 0], return_index=True)[1]] | |
| correct[matches[:, 1].astype(int), i] = True | |
| return torch.tensor(correct, dtype=torch.bool, device=detections.device) | |
| def plot_val_samples(self, batch, ni): | |
| """Plots and saves validation set samples with predicted bounding boxes and keypoints.""" | |
| plot_images(batch['img'], | |
| batch['batch_idx'], | |
| batch['cls'].squeeze(-1), | |
| batch['bboxes'], | |
| kpts=batch['keypoints'], | |
| paths=batch['im_file'], | |
| fname=self.save_dir / f'val_batch{ni}_labels.jpg', | |
| names=self.names, | |
| on_plot=self.on_plot) | |
| def plot_predictions(self, batch, preds, ni): | |
| """Plots predictions for YOLO model.""" | |
| pred_kpts = torch.cat([p[:, 6:].view(-1, *self.kpt_shape) for p in preds], 0) | |
| plot_images(batch['img'], | |
| *output_to_target(preds, max_det=self.args.max_det), | |
| kpts=pred_kpts, | |
| paths=batch['im_file'], | |
| fname=self.save_dir / f'val_batch{ni}_pred.jpg', | |
| names=self.names, | |
| on_plot=self.on_plot) # pred | |
| def pred_to_json(self, predn, filename): | |
| """Converts YOLO predictions to COCO JSON format.""" | |
| stem = Path(filename).stem | |
| image_id = int(stem) if stem.isnumeric() else stem | |
| box = ops.xyxy2xywh(predn[:, :4]) # xywh | |
| box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |
| for p, b in zip(predn.tolist(), box.tolist()): | |
| self.jdict.append({ | |
| 'image_id': image_id, | |
| 'category_id': self.class_map[int(p[5])], | |
| 'bbox': [round(x, 3) for x in b], | |
| 'keypoints': p[6:], | |
| 'score': round(p[4], 5)}) | |
| def eval_json(self, stats): | |
| """Evaluates object detection model using COCO JSON format.""" | |
| if self.args.save_json and self.is_coco and len(self.jdict): | |
| anno_json = self.data['path'] / 'annotations/person_keypoints_val2017.json' # annotations | |
| pred_json = self.save_dir / 'predictions.json' # predictions | |
| LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...') | |
| try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb | |
| check_requirements('pycocotools>=2.0.6') | |
| from pycocotools.coco import COCO # noqa | |
| from pycocotools.cocoeval import COCOeval # noqa | |
| for x in anno_json, pred_json: | |
| assert x.is_file(), f'{x} file not found' | |
| anno = COCO(str(anno_json)) # init annotations api | |
| pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path) | |
| for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'keypoints')]): | |
| if self.is_coco: | |
| eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval | |
| eval.evaluate() | |
| eval.accumulate() | |
| eval.summarize() | |
| idx = i * 4 + 2 | |
| stats[self.metrics.keys[idx + 1]], stats[ | |
| self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50 | |
| except Exception as e: | |
| LOGGER.warning(f'pycocotools unable to run: {e}') | |
| return stats | |
| def val(cfg=DEFAULT_CFG, use_python=False): | |
| """Performs validation on YOLO model using given data.""" | |
| model = cfg.model or 'yolov8n-pose.pt' | |
| data = cfg.data or 'coco8-pose.yaml' | |
| args = dict(model=model, data=data) | |
| if use_python: | |
| from ultralytics import YOLO | |
| YOLO(model).val(**args) | |
| else: | |
| validator = PoseValidator(args=args) | |
| validator(model=args['model']) | |
| if __name__ == '__main__': | |
| val() | |