import gradio as gr import os import pandas as pd import json from PIL import Image, ImageSequence import io from functools import reduce import numpy as np from datetime import datetime, timedelta import matplotlib.pyplot as plt from leaderboard_utils import ( get_organization, get_mario_planning_leaderboard, get_sokoban_leaderboard, get_2048_leaderboard, get_candy_leaderboard, get_tetris_planning_leaderboard, get_ace_attorney_leaderboard, get_combined_leaderboard, GAME_ORDER ) from data_visualization import ( get_combined_leaderboard_with_group_bar, create_horizontal_bar_chart, get_combined_leaderboard_with_single_radar ) from gallery_tab import create_video_gallery HAS_ENHANCED_LEADERBOARD = True # Define time points and their corresponding data files TIME_POINTS = { "03/25/2025": "rank_data_03_25_2025.json", # Add more time points here as they become available } # Load the initial JSON file with rank data with open(TIME_POINTS["03/25/2025"], "r", encoding='utf-8') as f: rank_data = json.load(f) # Load the model leaderboard data with open("rank_single_model_03_25_2025.json", "r", encoding='utf-8') as f: model_rank_data = json.load(f) # Add leaderboard state at the top level leaderboard_state = { "current_game": None, "previous_overall": { # "Super Mario Bros": True, # Commented out "Super Mario Bros": True, "Sokoban": True, "2048": True, "Candy Crush": True, # "Tetris(complete)", # Commented out "Tetris": True, "Ace Attorney": True }, "previous_details": { # "Super Mario Bros": False, # Commented out "Super Mario Bros": False, "Sokoban": False, "2048": False, "Candy Crush": False, # "Tetris(complete)": False, # Commented out "Tetris": False, "Ace Attorney": False } } # Load video links and news data with open('assets/game_video_link.json', 'r', encoding='utf-8') as f: VIDEO_LINKS = json.load(f) with open('assets/news.json', 'r', encoding='utf-8') as f: NEWS_DATA = json.load(f) def load_rank_data(time_point): """Load rank data for a specific time point""" if time_point in TIME_POINTS: try: with open(TIME_POINTS[time_point], "r", encoding='utf-8') as f: return json.load(f) except FileNotFoundError: return None return None # Add a note about score values def add_score_note(): return gr.Markdown("*Note: 'n/a' in the table indicates no data point for that model.*", elem_classes="score-note") # Function to prepare DataFrame for display def prepare_dataframe_for_display(df, for_game=None): """Format DataFrame for better display in the UI""" # Clone the DataFrame to avoid modifying the original display_df = df.copy() # Filter out normalized score columns norm_columns = [col for col in display_df.columns if col.startswith('norm_')] if norm_columns: display_df = display_df.drop(columns=norm_columns) # Replace '_' with '-' for better display for col in display_df.columns: if col.endswith(' Score') and col != 'Avg Normalized Score': display_df[col] = display_df[col].apply(lambda x: '-' if x == '_' else x) # If we're in detailed view, sort by score if for_game: # Sort by relevant score column score_col = f"{for_game} Score" if score_col in display_df.columns: # Convert to numeric for sorting, treating '-' as NaN display_df[score_col] = pd.to_numeric(display_df[score_col], errors='coerce') # Sort by score in descending order display_df = display_df.sort_values(by=score_col, ascending=False) # Filter out models that didn't participate display_df = display_df[~display_df[score_col].isna()] else: # For overall view, sort by average normalized score if available, otherwise fallback to average scores if 'Avg Normalized Score' in display_df.columns: # Sort by average normalized score (already calculated in leaderboard_utils) display_df = display_df.sort_values(by='Avg Normalized Score', ascending=False) else: # Calculate an internal sorting key based on average scores, but don't add it to the display_df score_cols = [col for col in display_df.columns if col.endswith(' Score')] if score_cols: temp_sort_df = display_df.copy() for col in score_cols: temp_sort_df[col] = pd.to_numeric(temp_sort_df[col], errors='coerce') # Create a temporary column for sorting temp_sort_df['temp_avg_score_for_sort'] = temp_sort_df[score_cols].mean(axis=1) # Sort by this temporary average score (higher is better for scores) # and then by Player name as a tie-breaker display_df = display_df.loc[temp_sort_df.sort_values(by=['temp_avg_score_for_sort', 'Player'], ascending=[False, True]).index] # Add medal emojis for top 3 performers if len(display_df) > 0 and 'Player' in display_df.columns: # Reset index to get proper ranking after sorting display_df = display_df.reset_index(drop=True) # Add medal emojis to Player names for top 3 medal_emojis = ['đŸĨ‡', 'đŸĨˆ', 'đŸĨ‰'] for i in range(min(3, len(display_df))): original_name = display_df.loc[i, 'Player'] display_df.loc[i, 'Player'] = f"{medal_emojis[i]} {original_name}" # Add line breaks to column headers new_columns = {} for col in display_df.columns: if col.endswith(' Score') and col != 'Avg Normalized Score': # Replace 'Game Name Score' with 'Game Name\nScore' game_name = col.replace(' Score', '') new_col = f"{game_name}\nScore" new_columns[col] = new_col elif col == 'Avg Normalized Score': # Add line break to Avg Normalized Score column new_columns[col] = "Avg Normalized\nScore" # Rename columns with new line breaks if new_columns: display_df = display_df.rename(columns=new_columns) return display_df # Helper function to ensure leaderboard updates maintain consistent height def update_df_with_height(df): """Update DataFrame with consistent height parameter.""" # Create column widths array col_widths = ["40px"] # Row number column width col_widths.append("230px") # Player column - reduced by 20px col_widths.append("120px") # Organization column # Check if there's an Avg Normalized Score column if any('Avg Normalized' in col for col in df.columns): col_widths.append("140px") # Avg Normalized Score column - slightly wider # Add game score columns remaining_cols = len(df.columns) - len(col_widths) + 1 # +1 because we subtracted row number column for _ in range(remaining_cols): col_widths.append("120px") return gr.update(value=df, show_row_numbers=True, show_fullscreen_button=True, line_breaks=True, show_search="search", # max_height=None, # Remove height limitation - COMMENTED OUT column_widths=col_widths) def update_leaderboard(# mario_overall, mario_details, # Commented out mario_plan_overall, mario_plan_details, # Added sokoban_overall, sokoban_details, _2048_overall, _2048_details, candy_overall, candy_details, # tetris_overall, tetris_details, # Commented out tetris_plan_overall, tetris_plan_details, ace_attorney_overall, ace_attorney_details, top_n=5, data_source=None): global leaderboard_state # Use provided data source or default to rank_data data = data_source if data_source is not None else rank_data # Convert current checkbox states to dictionary for easier comparison current_overall = { # "Super Mario Bros": mario_overall, # Commented out "Super Mario Bros": mario_plan_overall, "Sokoban": sokoban_overall, "2048": _2048_overall, "Candy Crush": candy_overall, # "Tetris(complete)": tetris_overall, # Commented out "Tetris": tetris_plan_overall, "Ace Attorney": ace_attorney_overall } current_details = { # "Super Mario Bros": mario_details, # Commented out "Super Mario Bros": mario_plan_details, "Sokoban": sokoban_details, "2048": _2048_details, "Candy Crush": candy_details, # "Tetris(complete)": tetris_details, # Commented out "Tetris": tetris_plan_details, "Ace Attorney": ace_attorney_details } # Find which game's state changed changed_game = None for game in current_overall.keys(): if (current_overall[game] != leaderboard_state["previous_overall"][game] or current_details[game] != leaderboard_state["previous_details"][game]): changed_game = game break if changed_game: # If a game's details checkbox was checked if current_details[changed_game] and not leaderboard_state["previous_details"][changed_game]: # Reset all other games' states for game in current_overall.keys(): if game != changed_game: current_overall[game] = False current_details[game] = False leaderboard_state["previous_overall"][game] = False leaderboard_state["previous_details"][game] = False # Update state for the selected game leaderboard_state["current_game"] = changed_game leaderboard_state["previous_overall"][changed_game] = True leaderboard_state["previous_details"][changed_game] = True current_overall[changed_game] = True # If a game's overall checkbox was checked elif current_overall[changed_game] and not leaderboard_state["previous_overall"][changed_game]: # If we were in details view for another game, switch to overall view if leaderboard_state["current_game"] and leaderboard_state["previous_details"][leaderboard_state["current_game"]]: # Reset previous game's details leaderboard_state["previous_details"][leaderboard_state["current_game"]] = False current_details[leaderboard_state["current_game"]] = False leaderboard_state["current_game"] = None # Update state leaderboard_state["previous_overall"][changed_game] = True leaderboard_state["previous_details"][changed_game] = False # If a game's overall checkbox was unchecked elif not current_overall[changed_game] and leaderboard_state["previous_overall"][changed_game]: # If we're in details view, don't allow unchecking the overall checkbox if leaderboard_state["current_game"] == changed_game: current_overall[changed_game] = True else: leaderboard_state["previous_overall"][changed_game] = False if leaderboard_state["current_game"] == changed_game: leaderboard_state["current_game"] = None # If a game's details checkbox was unchecked elif not current_details[changed_game] and leaderboard_state["previous_details"][changed_game]: leaderboard_state["previous_details"][changed_game] = False if leaderboard_state["current_game"] == changed_game: leaderboard_state["current_game"] = None # When exiting details view, only reset the current game's state current_overall[changed_game] = True current_details[changed_game] = False leaderboard_state["previous_overall"][changed_game] = True leaderboard_state["previous_details"][changed_game] = False # Special case: If all games are selected and we're trying to view details all_games_selected = all(current_overall.values()) and not any(current_details.values()) if all_games_selected and changed_game and current_details[changed_game]: # Reset all other games' states for game in current_overall.keys(): if game != changed_game: current_overall[game] = False current_details[game] = False leaderboard_state["previous_overall"][game] = False leaderboard_state["previous_details"][game] = False # Update state for the selected game leaderboard_state["current_game"] = changed_game leaderboard_state["previous_overall"][changed_game] = True leaderboard_state["previous_details"][changed_game] = True current_overall[changed_game] = True # Build dictionary for selected games selected_games = { # "Super Mario Bros": current_overall["Super Mario Bros"], # Commented out "Super Mario Bros": current_overall["Super Mario Bros"], "Sokoban": current_overall["Sokoban"], "2048": current_overall["2048"], "Candy Crush": current_overall["Candy Crush"], # "Tetris(complete)": current_overall["Tetris(complete)"], # Commented out "Tetris": current_overall["Tetris"], "Ace Attorney": current_overall["Ace Attorney"] } # Get the appropriate DataFrame and charts based on current state if leaderboard_state["current_game"]: # For detailed view - use slider value for both leaderboards limit = top_n # if leaderboard_state["current_game"] == "Super Mario Bros": # Commented out # df = get_mario_leaderboard(data) if leaderboard_state["current_game"] == "Super Mario Bros": df = get_mario_planning_leaderboard(data, limit) elif leaderboard_state["current_game"] == "Sokoban": df = get_sokoban_leaderboard(data, limit) elif leaderboard_state["current_game"] == "2048": df = get_2048_leaderboard(data, limit) elif leaderboard_state["current_game"] == "Candy Crush": df = get_candy_leaderboard(data, limit) elif leaderboard_state["current_game"] == "Tetris": df = get_tetris_planning_leaderboard(data, limit) elif leaderboard_state["current_game"] == "Ace Attorney": df = get_ace_attorney_leaderboard(data, limit) else: # Should not happen if current_game is one of the known games df = pd.DataFrame() # Empty df display_df = prepare_dataframe_for_display(df, leaderboard_state["current_game"]) chart = create_horizontal_bar_chart(df, leaderboard_state["current_game"]) radar_chart = chart # In detailed view, radar and group bar can be the same as the main chart group_bar_chart = chart else: # For overall view - use slider value for both leaderboards limit = top_n df, group_bar_chart = get_combined_leaderboard_with_group_bar(data, selected_games, top_n, limit) display_df = prepare_dataframe_for_display(df) # Pass appropriate title and top_n based on data source _, radar_chart = get_combined_leaderboard_with_single_radar(data, selected_games, limit_to_top_n=limit, top_n=top_n) chart = radar_chart # In overall view, the 'detailed' chart can be the radar chart # Return values, including all four plot placeholders return (update_df_with_height(display_df), chart, radar_chart, group_bar_chart, current_overall["Super Mario Bros"], current_details["Super Mario Bros"], current_overall["Sokoban"], current_details["Sokoban"], current_overall["2048"], current_details["2048"], current_overall["Candy Crush"], current_details["Candy Crush"], current_overall["Tetris"], current_details["Tetris"], current_overall["Ace Attorney"], current_details["Ace Attorney"]) def update_leaderboard_with_time(time_point, # mario_overall, mario_details, # Commented out mario_plan_overall, mario_plan_details, # Added sokoban_overall, sokoban_details, _2048_overall, _2048_details, candy_overall, candy_details, # tetris_overall, tetris_details, # Commented out tetris_plan_overall, tetris_plan_details, ace_attorney_overall, ace_attorney_details): # Load rank data for the selected time point global rank_data new_rank_data = load_rank_data(time_point) if new_rank_data is not None: rank_data = new_rank_data # Use the existing update_leaderboard function, including Super Mario return update_leaderboard(# mario_overall, mario_details, # Commented out mario_plan_overall, mario_plan_details, # Added sokoban_overall, sokoban_details, _2048_overall, _2048_details, candy_overall, candy_details, # tetris_overall, tetris_details, # Commented out tetris_plan_overall, tetris_plan_details, ace_attorney_overall, ace_attorney_details) def get_total_model_count(data_source): """Get the total number of unique models in the data""" selected_games = { "Super Mario Bros": True, "Sokoban": True, "2048": True, "Candy Crush": True, "Tetris": True, "Ace Attorney": True } df = get_combined_leaderboard(data_source, selected_games) return len(df["Player"].unique()) def get_initial_state(): """Get the initial state for the leaderboard""" return { "current_game": None, "previous_overall": { # "Super Mario Bros": True, # Commented out "Super Mario Bros": True, "Sokoban": True, "2048": True, "Candy Crush": True, # "Tetris(complete)", # Commented out "Tetris": True, "Ace Attorney": True }, "previous_details": { # "Super Mario Bros": False, # Commented out "Super Mario Bros": False, "Sokoban": False, "2048": False, "Candy Crush": False, # "Tetris(complete)": False, # Commented out "Tetris": False, "Ace Attorney": False } } def clear_filters(top_n=5, data_source=None): global leaderboard_state # Use provided data source or default to rank_data data = data_source if data_source is not None else rank_data selected_games = { "Super Mario Bros": True, "Sokoban": True, "2048": True, "Candy Crush": True, "Tetris": True, "Ace Attorney": True } # Use slider value for both leaderboards limit = top_n df, group_bar_chart = get_combined_leaderboard_with_group_bar(data, selected_games, top_n, limit) display_df = prepare_dataframe_for_display(df) # Pass top_n parameter for consistent titles _, radar_chart = get_combined_leaderboard_with_single_radar(data, selected_games, limit_to_top_n=limit, top_n=top_n) leaderboard_state = get_initial_state() # Return values, including all four plot placeholders return (update_df_with_height(display_df), radar_chart, radar_chart, group_bar_chart, True, False, # mario_plan True, False, # sokoban True, False, # 2048 True, False, # candy True, False, # Tetrisplan True, False) # ace attorney def create_timeline_slider(): """Create a custom timeline slider component""" timeline_html = """
03/25/2025
""" return gr.HTML(timeline_html) def build_app(): with gr.Blocks(css=""" /* Fix for scrolling issues */ html, body { overflow-y: hidden !important; overflow-x: hidden !important; width: 100% !important; height: 100% !important; max-height: none !important; position: relative !important; } .radar-tip { font-size: 14px; color: #555; margin-top: 5px; margin-bottom: 20px; font-style: italic; } /* Force scrolling to work on the main container */ .gradio-container, #root, #app { width: 100% !important; max-width: 1200px !important; margin-left: auto !important; margin-right: auto !important; min-height: auto !important; height: auto !important; overflow: visible !important; position: relative !important; } /* Remove ALL inner scrollbars - very important! */ .gradio-container * { scrollbar-width: none !important; /* Firefox */ } /* Hide scrollbars for Chrome, Safari and Opera */ .gradio-container *::-webkit-scrollbar { display: none !important; } /* Only allow scrollbar on body */ body::-webkit-scrollbar { display: block !important; width: 10px !important; } body::-webkit-scrollbar-track { background: #f1f1f1 !important; } body::-webkit-scrollbar-thumb { background: #888 !important; border-radius: 5px !important; } body::-webkit-scrollbar-thumb:hover { background: #555 !important; } /* Clean up table styling */ .table-container { width: 100% !important; overflow: hidden !important; border-radius: 8px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); } /* Remove duplicate scrollbars */ .gradio-dataframe [data-testid="table"], [data-testid="dataframe"] [data-testid="table"], .gradio-dataframe tbody, [data-testid="dataframe"] tbody, .table-container > div, .table-container > div > div { overflow: hidden !important; /* max-height: none !important; */ /* REMOVED */ } /* Ensure table contents are visible without scrollbars */ .gradio-dataframe, [data-testid="dataframe"] { overflow: visible !important; /* max-height: none !important; */ /* REMOVED */ border: none !important; } /* Visualization styling */ .visualization-container .js-plotly-plot { margin-left: auto !important; margin-right: auto !important; display: block !important; max-width: 1000px; } /* Section styling */ .section-title { font-size: 1.5em; font-weight: bold; color: #2c3e50; margin-bottom: 15px; padding-bottom: 10px; border-bottom: 2px solid #e9ecef; text-align: center; } /* Fix table styling */ .table-container table { width: 100%; border-collapse: separate; border-spacing: 0; table-layout: fixed !important; } /* Column width customization - adjust for row numbers being first column */ .table-container th:nth-child(2), .table-container td:nth-child(2) { width: 230px !important; min-width: 200px !important; max-width: 280px !important; padding-left: 8px !important; padding-right: 8px !important; } .table-container th:nth-child(3), .table-container td:nth-child(3) { width: 120px !important; min-width: 100px !important; max-width: 140px !important; } /* Avg Normalized Score column (4th column) */ .table-container th:nth-child(4), .table-container td:nth-child(4) { width: 140px !important; min-width: 120px !important; max-width: 160px !important; text-align: center !important; } /* Game score columns (5th column onwards) */ .table-container th:nth-child(n+5), .table-container td:nth-child(n+5) { width: 120px !important; min-width: 100px !important; max-width: 140px !important; text-align: center !important; } /* Make headers sticky */ .table-container th { position: sticky !important; top: 0 !important; background-color: var(--header-bg, #f8f9fa) !important; z-index: 10 !important; font-weight: bold; padding: 16px 10px !important; border-bottom: 2px solid var(--border-color, #e9ecef); white-space: pre-wrap !important; word-wrap: break-word !important; line-height: 1.2 !important; height: auto !important; min-height: 60px !important; vertical-align: middle !important; color: var(--header-text, #2c3e50) !important; } /* Dark mode specific styles */ .dark .table-container th { --header-bg: #2d3748; --header-text: #e2e8f0; --border-color: #4a5568; } /* Light mode specific styles */ .light .table-container th { --header-bg: #f8f9fa; --header-text: #2c3e50; --border-color: #e9ecef; } /* Simple cell styling */ .table-container td { padding: 8px 8px; border-bottom: 1px solid var(--border-color, #e9ecef); } /* Row number column styling */ .gradio-dataframe thead tr th[id="0"], .gradio-dataframe tbody tr td:nth-child(1), [data-testid="dataframe"] thead tr th[id="0"], [data-testid="dataframe"] tbody tr td:nth-child(1), .svelte-1gfkn6j thead tr th:first-child, .svelte-1gfkn6j tbody tr td:first-child { width: 40px !important; min-width: 40px !important; max-width: 40px !important; padding: 4px !important; text-align: center !important; font-size: 0.85em !important; } /* Fix for Gradio footer causing scroll issues */ footer { position: relative !important; width: 100% !important; margin-top: 40px !important; } .welcome-message { background: linear-gradient(135deg, #a8edea 0%, #fed6e3 100%); color: #333; padding: 20px; border-radius: 10px; margin: 20px 0; text-align: center; box-shadow: 0 4px 15px rgba(0,0,0,0.05); } /* Dark mode support for welcome message */ .dark .welcome-message { background: linear-gradient(135deg, #1a4a4f 0%, #4a1f3a 100%); color: #e0e0e0; box-shadow: 0 4px 15px rgba(255,255,255,0.05); } .welcome-message h3 { margin: 0 0 10px 0; font-size: 1.3em; color: inherit; } .welcome-message p { margin: 0; font-size: 1.1em; line-height: 1.5; color: inherit; } """) as demo: gr.Markdown("# 🎮 Lmgame Bench: Leaderboard 🎲") # Add custom JavaScript for table header line breaks gr.HTML(""" """) with gr.Tabs(): with gr.Tab("🤖 Model Leaderboard"): with gr.Row(): gr.Markdown(""" **🎮 Welcome to LMGame Bench!** We invite developers to implement their own gaming agents by replacing our `baseAgent` in `customer_runner.py` and evaluate them on our comprehensive benchmark. Visit our repository at https://github.com/lmgame-org/GamingAgent to get started and join the competition to see how your agent performs! """, elem_classes="welcome-message") # Visualization section with gr.Row(): gr.Markdown("### 📊 Data Visualization") # Detailed view visualization (single chart) model_detailed_visualization = gr.Plot( label="Performance Visualization", visible=False, elem_classes="visualization-container" ) with gr.Row(): # Calculate dynamic maximum based on total models model_max_models = get_total_model_count(model_rank_data) model_top_n_slider = gr.Slider( minimum=1, maximum=model_max_models, step=1, value=model_max_models, label=f"Number of Top Models to Display in All Views (max: {model_max_models})", elem_classes="top-n-slider" ) with gr.Column(visible=True) as model_overall_visualizations: with gr.Tabs(): with gr.Tab("📈 Radar Chart"): model_radar_visualization = gr.Plot( label="Comparative Analysis (Radar Chart)", elem_classes="visualization-container" ) gr.Markdown( "*💡 Click a legend entry to isolate that model. Double-click additional ones to add them for comparison.*", elem_classes="radar-tip" ) with gr.Tab("📊 Group Bar Chart"): model_group_bar_visualization = gr.Plot( label="Comparative Analysis (Group Bar Chart)", elem_classes="visualization-container" ) gr.Markdown( "*💡 Click a legend entry to isolate that model. Double-click additional ones to add them for comparison.*", elem_classes="radar-tip" ) # Game selection section with gr.Row(): gr.Markdown("### đŸ•šī¸ Game Selection") with gr.Row(): with gr.Column(): gr.Markdown("**🍄 Super Mario Bros**") model_mario_plan_overall = gr.Checkbox(label="Super Mario Bros Score", value=True) model_mario_plan_details = gr.Checkbox(label="Super Mario Bros Details", value=False) with gr.Column(): gr.Markdown("**đŸ“Ļ Sokoban**") model_sokoban_overall = gr.Checkbox(label="Sokoban Score", value=True) model_sokoban_details = gr.Checkbox(label="Sokoban Details", value=False) with gr.Column(): gr.Markdown("**đŸ”ĸ 2048**") model_2048_overall = gr.Checkbox(label="2048 Score", value=True) model_2048_details = gr.Checkbox(label="2048 Details", value=False) with gr.Column(): gr.Markdown("**đŸŦ Candy Crush**") model_candy_overall = gr.Checkbox(label="Candy Crush Score", value=True) model_candy_details = gr.Checkbox(label="Candy Crush Details", value=False) with gr.Column(): gr.Markdown("**đŸŽ¯ Tetris**") model_tetris_plan_overall = gr.Checkbox(label="Tetris Score", value=True) model_tetris_plan_details = gr.Checkbox(label="Tetris Details", value=False) with gr.Column(): gr.Markdown("**âš–ī¸ Ace Attorney**") model_ace_attorney_overall = gr.Checkbox(label="Ace Attorney Score", value=True) model_ace_attorney_details = gr.Checkbox(label="Ace Attorney Details", value=False) # Controls with gr.Row(): with gr.Column(scale=2): gr.Markdown("**⏰ Time Tracker**") model_timeline = create_timeline_slider() with gr.Column(scale=1): gr.Markdown("**🔄 Controls**") model_clear_btn = gr.Button("Reset Filters", variant="secondary") # Leaderboard table with gr.Row(): gr.Markdown("### 📋 Detailed Results") with gr.Row(): gr.Markdown("*💡 The slider above controls how many top models are shown in the radar chart, bar chart, and data table.*", elem_classes="radar-tip") # Get initial leaderboard dataframe (limited by default slider value for model leaderboard) model_initial_df = get_combined_leaderboard(model_rank_data, { "Super Mario Bros": True, "Sokoban": True, "2048": True, "Candy Crush": True, "Tetris": True, "Ace Attorney": True }, limit_to_top_n=None) # Format the DataFrame for display model_initial_display_df = prepare_dataframe_for_display(model_initial_df) # Custom column widths including row numbers for model leaderboard model_col_widths = ["40px"] # Row number column width model_col_widths.append("230px") # Player column - reduced by 20px model_col_widths.append("120px") # Organization column # Check if there's an Avg Normalized Score column if any('Avg Normalized' in col for col in model_initial_display_df.columns): model_col_widths.append("140px") # Avg Normalized Score column - slightly wider # Add game score columns remaining_cols = len(model_initial_display_df.columns) - len(model_col_widths) + 1 # +1 because we subtracted row number column for _ in range(remaining_cols): model_col_widths.append("120px") # Add reference to Jupyter notebook with gr.Row(): gr.Markdown("*All data analysis can be replicated by checking [this Jupyter notebook](https://colab.research.google.com/drive/1CYFiJGm3EoBXXI8vICPVR82J9qrmmRvc#scrollTo=qft1Oald-21J)*") # Create a standard DataFrame component with enhanced styling with gr.Row(): model_leaderboard_df = gr.DataFrame( value=model_initial_display_df, interactive=True, elem_id="model-leaderboard-table", elem_classes="table-container", wrap=True, show_row_numbers=True, show_fullscreen_button=True, line_breaks=True, max_height=1000, show_search="search", column_widths=model_col_widths ) # Add the score note below the table with gr.Row(): model_score_note = add_score_note() # List of all checkboxes for model leaderboard model_checkbox_list = [ model_mario_plan_overall, model_mario_plan_details, model_sokoban_overall, model_sokoban_details, model_2048_overall, model_2048_details, model_candy_overall, model_candy_details, model_tetris_plan_overall, model_tetris_plan_details, model_ace_attorney_overall, model_ace_attorney_details ] # Update visualizations when checkboxes change def update_model_visualizations(*checkbox_states): # Check if any details checkbox is selected is_details_view = any([ checkbox_states[1], # Mario Plan details checkbox_states[3], # Sokoban details checkbox_states[5], # 2048 details checkbox_states[7], # Candy Crush details checkbox_states[9], # Tetris details checkbox_states[11] # Ace Attorney details ]) # Update visibility of visualization blocks return { model_detailed_visualization: gr.update(visible=is_details_view), model_overall_visualizations: gr.update(visible=not is_details_view) } # Add change event to all checkboxes for checkbox in model_checkbox_list: checkbox.change( update_model_visualizations, inputs=model_checkbox_list, outputs=[model_detailed_visualization, model_overall_visualizations] ) # Update leaderboard and visualizations when checkboxes change for checkbox in model_checkbox_list: checkbox.change( lambda *args: update_leaderboard(*args, data_source=model_rank_data), inputs=model_checkbox_list + [model_top_n_slider], outputs=[ model_leaderboard_df, model_detailed_visualization, model_radar_visualization, model_group_bar_visualization ] + model_checkbox_list ) # Update when model top_n_slider changes model_top_n_slider.change( lambda *args: update_leaderboard(*args, data_source=model_rank_data), inputs=model_checkbox_list + [model_top_n_slider], outputs=[ model_leaderboard_df, model_detailed_visualization, model_radar_visualization, model_group_bar_visualization ] + model_checkbox_list ) # Update when clear button is clicked model_clear_btn.click( lambda *args: clear_filters(*args, data_source=model_rank_data), inputs=[model_top_n_slider], outputs=[ model_leaderboard_df, model_detailed_visualization, model_radar_visualization, model_group_bar_visualization ] + model_checkbox_list ) # Initialize the model leaderboard (with all models shown by default) demo.load( lambda: clear_filters(top_n=get_total_model_count(model_rank_data), data_source=model_rank_data), inputs=[], outputs=[ model_leaderboard_df, model_detailed_visualization, model_radar_visualization, model_group_bar_visualization ] + model_checkbox_list ) with gr.Tab("🏆 Agent Leaderboard"): # Visualization section with gr.Row(): # Calculate dynamic maximum based on total models agent_max_models = get_total_model_count(rank_data) agent_top_n_slider = gr.Slider( minimum=1, maximum=agent_max_models, step=1, value=5, label=f"Number of Top Models to Display in All Views (max: {agent_max_models})", elem_classes="top-n-slider" ) with gr.Row(): gr.Markdown("### 📊 Data Visualization") # Detailed view visualization (single chart) detailed_visualization = gr.Plot( label="Performance Visualization", visible=False, elem_classes="visualization-container" ) # with gr.Row(): # # Calculate dynamic maximum based on total models # agent_max_models = get_total_model_count(rank_data) # top_n_slider = gr.Slider( # minimum=1, # maximum=agent_max_models, # step=1, # value=min(3, agent_max_models), # label=f"Number of Top Models to Display in All Views (max: {agent_max_models})", # elem_classes="top-n-slider" # ) with gr.Column(visible=True) as overall_visualizations: with gr.Tabs(): with gr.Tab("📈 Radar Chart"): radar_visualization = gr.Plot( label="Comparative Analysis (Radar Chart)", elem_classes="visualization-container" ) gr.Markdown( "*💡 Click a legend entry to isolate that model. Double-click additional ones to add them for comparison.*\n\n*🎮 Model Name (GamingAgent) - Our specialized gaming agents*", elem_classes="radar-tip" ) with gr.Tab("📊 Group Bar Chart"): group_bar_visualization = gr.Plot( label="Comparative Analysis (Group Bar Chart)", elem_classes="visualization-container" ) gr.Markdown( "*💡 Click a legend entry to isolate that model. Double-click additional ones to add them for comparison.*\n\n*🎮 Model Name (GamingAgent) - Our specialized gaming agents*", elem_classes="radar-tip" ) # Hidden placeholder for group bar visualization (to maintain code references) # group_bar_visualization = gr.Plot(visible=False) # Game selection section with gr.Row(): gr.Markdown("### đŸ•šī¸ Game Selection") with gr.Row(): # with gr.Column(): # Commented out Super Mario BrosUI # gr.Markdown("**🎮 Super Mario Bros**") # mario_overall = gr.Checkbox(label="Super Mario BrosScore", value=True) # mario_details = gr.Checkbox(label="Super Mario BrosDetails", value=False) with gr.Column(): # Added Super Mario BrosUI gr.Markdown("**🍄 Super Mario Bros**") mario_plan_overall = gr.Checkbox(label="Super Mario Bros Score", value=True) mario_plan_details = gr.Checkbox(label="Super Mario Bros Details", value=False) with gr.Column(): # Sokoban is now after mario_plan gr.Markdown("**đŸ“Ļ Sokoban**") sokoban_overall = gr.Checkbox(label="Sokoban Score", value=True) sokoban_details = gr.Checkbox(label="Sokoban Details", value=False) with gr.Column(): gr.Markdown("**đŸ”ĸ 2048**") _2048_overall = gr.Checkbox(label="2048 Score", value=True) _2048_details = gr.Checkbox(label="2048 Details", value=False) with gr.Column(): gr.Markdown("**đŸŦ Candy Crush**") candy_overall = gr.Checkbox(label="Candy Crush Score", value=True) candy_details = gr.Checkbox(label="Candy Crush Details", value=False) # with gr.Column(): # Commented out Tetris(complete) UI # gr.Markdown("**đŸŽ¯ Tetris(complete)**") # tetris_overall = gr.Checkbox(label="Tetris(complete) Score", value=True) # tetris_details = gr.Checkbox(label="Tetris(complete) Details", value=False) with gr.Column(): gr.Markdown("**đŸŽ¯ Tetris**") tetris_plan_overall = gr.Checkbox(label="Tetris Score", value=True) tetris_plan_details = gr.Checkbox(label="Tetris Details", value=False) with gr.Column(): gr.Markdown("**âš–ī¸ Ace Attorney**") ace_attorney_overall = gr.Checkbox(label="Ace Attorney Score", value=True) ace_attorney_details = gr.Checkbox(label="Ace Attorney Details", value=False) # Controls with gr.Row(): with gr.Column(scale=2): gr.Markdown("**⏰ Time Tracker**") timeline = create_timeline_slider() with gr.Column(scale=1): gr.Markdown("**🔄 Controls**") clear_btn = gr.Button("Reset Filters", variant="secondary") # Leaderboard table with gr.Row(): gr.Markdown("### 📋 Detailed Results") with gr.Row(): gr.Markdown("*🎮 Model Name (GamingAgent) - Our specialized gaming agents*", elem_classes="radar-tip") # Welcome message for custom gaming agents # Get initial leaderboard dataframe (limited by default slider value for agent leaderboard) initial_df = get_combined_leaderboard(rank_data, { # "Super Mario Bros": True, # Commented out "Super Mario Bros": True, "Sokoban": True, "2048": True, "Candy Crush": True, # "Tetris(complete)": True, # Commented out "Tetris": True, "Ace Attorney": True }, limit_to_top_n=5) # Format the DataFrame for display initial_display_df = prepare_dataframe_for_display(initial_df) # Custom column widths including row numbers col_widths = ["40px"] # Row number column width col_widths.append("230px") # Player column - reduced by 20px col_widths.append("120px") # Organization column # Check if there's an Avg Normalized Score column if any('Avg Normalized' in col for col in initial_display_df.columns): col_widths.append("140px") # Avg Normalized Score column - slightly wider # Add game score columns remaining_cols = len(initial_display_df.columns) - len(col_widths) + 1 # +1 because we subtracted row number column for _ in range(remaining_cols): col_widths.append("120px") # Create a standard DataFrame component with enhanced styling with gr.Row(): leaderboard_df = gr.DataFrame( value=initial_display_df, interactive=True, elem_id="leaderboard-table", elem_classes="table-container", wrap=True, show_row_numbers=True, show_fullscreen_button=True, line_breaks=True, max_height=1000, # Set a larger fixed height show_search="search", column_widths=col_widths ) # Add the score note below the table with gr.Row(): score_note = add_score_note() # List of all checkboxes, including Super Mario Bros checkbox_list = [ # mario_overall, mario_details, # Commented out mario_plan_overall, mario_plan_details, sokoban_overall, sokoban_details, _2048_overall, _2048_details, candy_overall, candy_details, # tetris_overall, tetris_details, # Commented out tetris_plan_overall, tetris_plan_details, ace_attorney_overall, ace_attorney_details ] # Update visualizations when checkboxes change def update_visualizations(*checkbox_states): # Check if any details checkbox is selected # Adjusted indices due to addition of Super Mario is_details_view = any([ checkbox_states[1], # Mario Plan details checkbox_states[3], # Sokoban details checkbox_states[5], # 2048 details checkbox_states[7], # Candy Crush details checkbox_states[9], # Tetris details checkbox_states[11] # Ace Attorney details ]) # Update visibility of visualization blocks return { detailed_visualization: gr.update(visible=is_details_view), overall_visualizations: gr.update(visible=not is_details_view) } # Add change event to all checkboxes for checkbox in checkbox_list: checkbox.change( update_visualizations, inputs=checkbox_list, outputs=[detailed_visualization, overall_visualizations] ) # Update leaderboard and visualizations when checkboxes change for checkbox in checkbox_list: checkbox.change( lambda *args: update_leaderboard(*args, data_source=rank_data), inputs=checkbox_list + [agent_top_n_slider], outputs=[ leaderboard_df, detailed_visualization, radar_visualization, group_bar_visualization ] + checkbox_list ) # Update when agent top_n_slider changes agent_top_n_slider.change( lambda *args: update_leaderboard(*args, data_source=rank_data), inputs=checkbox_list + [agent_top_n_slider], outputs=[ leaderboard_df, detailed_visualization, radar_visualization, group_bar_visualization ] + checkbox_list ) # Update when clear button is clicked clear_btn.click( lambda *args: clear_filters(*args, data_source=rank_data), inputs=[agent_top_n_slider], outputs=[ leaderboard_df, detailed_visualization, radar_visualization, group_bar_visualization ] + checkbox_list ) # Initialize the agent leaderboard (with top 5 limit) demo.load( lambda: clear_filters(top_n=5, data_source=rank_data), inputs=[], outputs=[ leaderboard_df, detailed_visualization, radar_visualization, group_bar_visualization ] + checkbox_list ) with gr.Tab("đŸŽĨ Gallery"): video_gallery = create_video_gallery() return demo if __name__ == "__main__": demo_app = build_app() # Add file serving configuration demo_app.launch( debug=True, show_error=True, share=True, height="100%", width="100%" )