File size: 14,816 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f 0519c89 7319d31 0519c89 7319d31 10e9b7d d59f015 e80aab9 3db6293 e80aab9 0519c89 7319d31 31243f4 7319d31 0519c89 7319d31 0519c89 7319d31 0519c89 7319d31 0519c89 7319d31 0519c89 7319d31 0519c89 4021bf3 7319d31 31243f4 0519c89 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 7319d31 31243f4 3c4371f 31243f4 7319d31 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 7d65c66 31243f4 e80aab9 0519c89 7d65c66 3c4371f 0519c89 31243f4 0519c89 31243f4 0519c89 31243f4 0519c89 7d65c66 0519c89 31243f4 0519c89 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 7319d31 0ee0419 e514fd7 7319d31 e514fd7 7319d31 0519c89 7319d31 e514fd7 7319d31 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7319d31 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 7319d31 7d65c66 3c4371f 7319d31 0519c89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import tempfile
from dotenv import load_dotenv
from typing import Optional
# Load environment variables
load_dotenv()
# Import your LangGraph agent
from graph.graph_builder import graph
from langchain_core.messages import HumanMessage
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- File Download Helper Function ---
def download_file(task_id: str, api_url: str) -> Optional[str]:
"""
Download file associated with a task_id from the evaluation API
Args:
task_id: The task ID to download file for
api_url: Base API URL
Returns:
str: Local path to downloaded file, or None if failed
"""
try:
file_url = f"{api_url}/files/{task_id}"
print(f"๐ Downloading file for task {task_id} from {file_url}")
response = requests.get(file_url, timeout=30)
response.raise_for_status()
# Try to get filename from response headers
content_disposition = response.headers.get('Content-Disposition', '')
if 'filename=' in content_disposition:
filename = content_disposition.split('filename=')[1].strip('"')
else:
# Fallback filename based on content type
content_type = response.headers.get('Content-Type', '')
if 'image' in content_type:
extension = '.jpg'
elif 'audio' in content_type:
extension = '.mp3'
elif 'video' in content_type:
extension = '.mp4'
else:
extension = '.txt'
filename = f"task_{task_id}_file{extension}"
# Save to temporary file
temp_dir = tempfile.gettempdir()
file_path = os.path.join(temp_dir, filename)
with open(file_path, 'wb') as f:
f.write(response.content)
print(f"โ
File downloaded successfully: {file_path}")
return file_path
except requests.exceptions.RequestException as e:
print(f"โ Error downloading file for task {task_id}: {e}")
return None
except Exception as e:
print(f"โ Unexpected error downloading file for task {task_id}: {e}")
return None
# --- Your LangGraph Agent Definition ---
# ----- THIS IS WHERE YOU BUILD YOUR AGENT ------
class BasicAgent:
def __init__(self):
"""Initialize the LangGraph agent"""
print("LangGraph Agent initialized with multimodal, search, math, and YouTube tools.")
# Verify environment variables
if not os.getenv("OPENROUTER_API_KEY"):
raise ValueError("OPENROUTER_API_KEY not found in environment variables")
# The graph is already compiled and ready to use
self.graph = graph
print("โ
Agent ready with tools: multimodal, search, math, YouTube")
def __call__(self, question: str, file_path: Optional[str] = None) -> str:
"""
Process a question using the LangGraph agent and return just the answer
Args:
question: The question to answer
file_path: Optional path to associated file (image, audio, etc.)
Returns:
str: The final answer (formatted for evaluation)
"""
print(f"๐ค Processing question: {question[:50]}...")
if file_path:
print(f"๐ Associated file: {file_path}")
try:
# Enhanced question with file information if available
enhanced_question = question
if file_path:
enhanced_question = f"{question}\n\nFile provided: {file_path}"
print(f"๐ Enhanced question with file reference")
# Create initial state with the enhanced question
initial_state = {"messages": [HumanMessage(content=enhanced_question)]}
# Run the LangGraph agent
result = self.graph.invoke(initial_state)
# Extract the final message content
final_message = result["messages"][-1]
answer = final_message.content
# Clean up the answer for evaluation (remove any extra formatting)
# The evaluation system expects just the answer, no explanations
if isinstance(answer, str):
answer = answer.strip()
# Remove common prefixes that might interfere with evaluation
prefixes_to_remove = [
"The answer is: ",
"Answer: ",
"The result is: ",
"Result: ",
"The final answer is: ",
"Based on the analysis: ",
"Based on the file: ",
]
for prefix in prefixes_to_remove:
if answer.startswith(prefix):
answer = answer[len(prefix):].strip()
break
print(f"โ
Agent answer: {answer}")
return answer
except Exception as e:
error_msg = f"Error processing question: {str(e)}"
print(f"โ {error_msg}")
return error_msg
finally:
# Clean up temporary file if it exists
if file_path and os.path.exists(file_path) and tempfile.gettempdir() in file_path:
try:
os.remove(file_path)
print(f"๐งน Cleaned up temporary file: {file_path}")
except Exception as e:
print(f"โ ๏ธ Could not clean up temporary file: {e}")
# Keep the rest of the file unchanged (run_and_submit_all function and Gradio interface)
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, downloads associated files, runs the BasicAgent on them,
submits all answers, and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent (using your LangGraph agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Download Files & Run Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
file_name = item.get("file_name") # โ
Check for associated file
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
print(f"\n๐ Processing Task {task_id}")
print(f"Question: {question_text[:100]}...")
if file_name:
print(f"Associated file: {file_name}")
# โ
Download file if it exists
downloaded_file_path = None
if file_name:
downloaded_file_path = download_file(task_id, api_url)
if not downloaded_file_path:
print(f"โ ๏ธ Failed to download file for task {task_id}, proceeding without file")
try:
# โ
Pass both question and file to agent
submitted_answer = agent(question_text, downloaded_file_path)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"File": file_name if file_name else "None",
"Submitted Answer": submitted_answer
})
print(f"โ
Task {task_id} completed")
except Exception as e:
print(f"โ Error running agent on task {task_id}: {e}")
error_answer = f"AGENT ERROR: {e}"
results_log.append({
"Task ID": task_id,
"Question": question_text,
"File": file_name if file_name else "None",
"Submitted Answer": error_answer
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# LangGraph Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
This space uses a LangGraph agent with multimodal, search, math, and YouTube tools powered by OpenRouter.
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
**Agent Capabilities:**
- ๐จ **Multimodal**: Analyze images, extract text (OCR), process audio transcripts
- ๐ **Search**: Web search using multiple providers (DuckDuckGo, Tavily, SerpAPI)
- ๐งฎ **Math**: Basic arithmetic, complex calculations, percentages, factorials
- ๐บ **YouTube**: Extract captions, get video information
- ๐ **File Processing**: Automatically downloads and processes evaluation files
---
**Note:** Processing all questions may take some time as the agent carefully analyzes each question and uses appropriate tools.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"โ
SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("โน๏ธ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"โ
SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("โน๏ธ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for LangGraph Agent Evaluation...")
demo.launch(debug=True, share=False)
|