import os import gradio as gr import requests import inspect import pandas as pd import tempfile from dotenv import load_dotenv from typing import Optional # Load environment variables load_dotenv() # Import your LangGraph agent from graph.graph_builder import graph from langchain_core.messages import HumanMessage # (Keep Constants as is) # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- File Download Helper Function --- def download_file(task_id: str, api_url: str) -> Optional[str]: """ Download file associated with a task_id from the evaluation API Args: task_id: The task ID to download file for api_url: Base API URL Returns: str: Local path to downloaded file, or None if failed """ try: file_url = f"{api_url}/files/{task_id}" print(f"๐Ÿ“ Downloading file for task {task_id} from {file_url}") response = requests.get(file_url, timeout=30) response.raise_for_status() # Try to get filename from response headers content_disposition = response.headers.get('Content-Disposition', '') if 'filename=' in content_disposition: filename = content_disposition.split('filename=')[1].strip('"') else: # Fallback filename based on content type content_type = response.headers.get('Content-Type', '') if 'image' in content_type: extension = '.jpg' elif 'audio' in content_type: extension = '.mp3' elif 'video' in content_type: extension = '.mp4' else: extension = '.txt' filename = f"task_{task_id}_file{extension}" # Save to temporary file temp_dir = tempfile.gettempdir() file_path = os.path.join(temp_dir, filename) with open(file_path, 'wb') as f: f.write(response.content) print(f"โœ… File downloaded successfully: {file_path}") return file_path except requests.exceptions.RequestException as e: print(f"โŒ Error downloading file for task {task_id}: {e}") return None except Exception as e: print(f"โŒ Unexpected error downloading file for task {task_id}: {e}") return None # --- Your LangGraph Agent Definition --- # ----- THIS IS WHERE YOU BUILD YOUR AGENT ------ class BasicAgent: def __init__(self): """Initialize the LangGraph agent""" print("LangGraph Agent initialized with multimodal, search, math, and YouTube tools.") # Verify environment variables if not os.getenv("OPENROUTER_API_KEY"): raise ValueError("OPENROUTER_API_KEY not found in environment variables") # The graph is already compiled and ready to use self.graph = graph print("โœ… Agent ready with tools: multimodal, search, math, YouTube") def __call__(self, question: str, file_path: Optional[str] = None) -> str: """ Process a question using the LangGraph agent and return just the answer Args: question: The question to answer file_path: Optional path to associated file (image, audio, etc.) Returns: str: The final answer (formatted for evaluation) """ print(f"๐Ÿค– Processing question: {question[:50]}...") if file_path: print(f"๐Ÿ“Ž Associated file: {file_path}") try: # Enhanced question with file information if available enhanced_question = question if file_path: enhanced_question = f"{question}\n\nFile provided: {file_path}" print(f"๐Ÿ“ Enhanced question with file reference") # Create initial state with the enhanced question initial_state = {"messages": [HumanMessage(content=enhanced_question)]} # Run the LangGraph agent result = self.graph.invoke(initial_state) # Extract the final message content final_message = result["messages"][-1] answer = final_message.content # Clean up the answer for evaluation (remove any extra formatting) # The evaluation system expects just the answer, no explanations if isinstance(answer, str): answer = answer.strip() # Remove common prefixes that might interfere with evaluation prefixes_to_remove = [ "The answer is: ", "Answer: ", "The result is: ", "Result: ", "The final answer is: ", "Based on the analysis: ", "Based on the file: ", ] for prefix in prefixes_to_remove: if answer.startswith(prefix): answer = answer[len(prefix):].strip() break print(f"โœ… Agent answer: {answer}") return answer except Exception as e: error_msg = f"Error processing question: {str(e)}" print(f"โŒ {error_msg}") return error_msg finally: # Clean up temporary file if it exists if file_path and os.path.exists(file_path) and tempfile.gettempdir() in file_path: try: os.remove(file_path) print(f"๐Ÿงน Cleaned up temporary file: {file_path}") except Exception as e: print(f"โš ๏ธ Could not clean up temporary file: {e}") # Keep the rest of the file unchanged (run_and_submit_all function and Gradio interface) def run_and_submit_all(profile: gr.OAuthProfile | None): """ Fetches all questions, downloads associated files, runs the BasicAgent on them, submits all answers, and displays the results. """ # --- Determine HF Space Runtime URL and Repo URL --- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code if profile: username= f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # 1. Instantiate Agent (using your LangGraph agent) try: agent = BasicAgent() except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None # In the case of an app running as a hugging Face space, this link points toward your codebase agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) # 2. Fetch Questions print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: print("Fetched questions list is empty.") return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except requests.exceptions.RequestException as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None except Exception as e: print(f"An unexpected error occurred fetching questions: {e}") return f"An unexpected error occurred fetching questions: {e}", None # 3. Download Files & Run Agent results_log = [] answers_payload = [] print(f"Running agent on {len(questions_data)} questions...") for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") file_name = item.get("file_name") # โœ… Check for associated file if not task_id or question_text is None: print(f"Skipping item with missing task_id or question: {item}") continue print(f"\n๐Ÿ“‹ Processing Task {task_id}") print(f"Question: {question_text[:100]}...") if file_name: print(f"Associated file: {file_name}") # โœ… Download file if it exists downloaded_file_path = None if file_name: downloaded_file_path = download_file(task_id, api_url) if not downloaded_file_path: print(f"โš ๏ธ Failed to download file for task {task_id}, proceeding without file") try: # โœ… Pass both question and file to agent submitted_answer = agent(question_text, downloaded_file_path) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({ "Task ID": task_id, "Question": question_text, "File": file_name if file_name else "None", "Submitted Answer": submitted_answer }) print(f"โœ… Task {task_id} completed") except Exception as e: print(f"โŒ Error running agent on task {task_id}: {e}") error_answer = f"AGENT ERROR: {e}" results_log.append({ "Task ID": task_id, "Question": question_text, "File": file_name if file_name else "None", "Submitted Answer": error_answer }) if not answers_payload: print("Agent did not produce any answers to submit.") return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # 4. Prepare Submission submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." print(status_update) # 5. Submit print(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) print("Submission successful.") results_df = pd.DataFrame(results_log) return final_status, results_df except requests.exceptions.HTTPError as e: error_detail = f"Server responded with status {e.response.status_code}." try: error_json = e.response.json() error_detail += f" Detail: {error_json.get('detail', e.response.text)}" except requests.exceptions.JSONDecodeError: error_detail += f" Response: {e.response.text[:500]}" status_message = f"Submission Failed: {error_detail}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.Timeout: status_message = "Submission Failed: The request timed out." print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.RequestException as e: status_message = f"Submission Failed: Network error - {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except Exception as e: status_message = f"An unexpected error occurred during submission: {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df # --- Build Gradio Interface using Blocks --- with gr.Blocks() as demo: gr.Markdown("# LangGraph Agent Evaluation Runner") gr.Markdown( """ **Instructions:** This space uses a LangGraph agent with multimodal, search, math, and YouTube tools powered by OpenRouter. 1. Log in to your Hugging Face account using the button below. 2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. **Agent Capabilities:** - ๐ŸŽจ **Multimodal**: Analyze images, extract text (OCR), process audio transcripts - ๐Ÿ” **Search**: Web search using multiple providers (DuckDuckGo, Tavily, SerpAPI) - ๐Ÿงฎ **Math**: Basic arithmetic, complex calculations, percentages, factorials - ๐Ÿ“บ **YouTube**: Extract captions, get video information - ๐Ÿ“ **File Processing**: Automatically downloads and processes evaluation files --- **Note:** Processing all questions may take some time as the agent carefully analyzes each question and uses appropriate tools. """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) # Check for SPACE_HOST and SPACE_ID at startup for information space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") if space_host_startup: print(f"โœ… SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("โ„น๏ธ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: print(f"โœ… SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: print("โ„น๏ธ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") print("-"*(60 + len(" App Starting ")) + "\n") print("Launching Gradio Interface for LangGraph Agent Evaluation...") demo.launch(debug=True, share=False)