import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer import torch MODEL_NAME = "segolilylabs/Lily-Cybersecurity-7B-v0.2" @st.cache_resource() def load_model(): tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto") return tokenizer, model tokenizer, model = load_model() st.title("🔐 Cybersecurity Chatbot") user_input = st.text_input("Ask a cybersecurity question:") if user_input: input_ids = tokenizer.encode(user_input, return_tensors="pt").to("cuda") output = model.generate(input_ids, max_length=200) response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True) st.write("🤖", response)