FruitQuality / app.py
lopesdri's picture
Update app.py
37ee4dc
raw
history blame
2.42 kB
import torch
import torchvision
import torch.nn as nn
import torchvision.transforms as transforms
model = torchvision.models.resnet50(pretrained=True)
model.fc = nn.Linear(model.fc.in_features, 2)
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')))
model.eval()
device = torch.device("cpu")
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
categories = ['Fruta pr贸pria para o consumo', 'Fruta impr贸pria para o consumo']
import gradio as gr
from PIL import Image
def inference(input_image):
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch)
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(output[0], dim=0)
# Show top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 2)
result = {}
for i in range(top5_prob.size(0)):
result[categories[top5_catid[i]]] = top5_prob[i].item()
return result
inputs = gr.inputs.Image(type='pil')
outputs = gr.outputs.Label(type="confidences",num_top_classes=5)
title = "ResNet"
description = "Gradio demo for ResNet, Deep residual networks pre-trained on ImageNet. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py' target='_blank'>Github Repo</a></p>"
examples = [
['dog.jpg']
]
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()