lopesdri commited on
Commit
401fcb5
1 Parent(s): a3aae2d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -3,7 +3,7 @@ import torchvision
3
  import torch.nn as nn
4
  import torchvision.transforms as transforms
5
 
6
- model = torchvision.models.resnet50(pretrained=False)
7
  model.fc = nn.Linear(model.fc.in_features, 2)
8
  model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')))
9
  model.eval()
@@ -15,6 +15,8 @@ transform = transforms.Compose([
15
  transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
16
  ])
17
 
 
 
18
  import gradio as gr
19
  from PIL import Image
20
 
@@ -25,7 +27,7 @@ def predict(image):
25
  with torch.no_grad():
26
  output = model(image)
27
  _, predicted = torch.max(output.data, 1)
28
- return dataset.classes[predicted.item()]
29
 
30
  # Define the input and output components
31
  image_input = gr.inputs.Image(type="pil", label="Upload Image")
 
3
  import torch.nn as nn
4
  import torchvision.transforms as transforms
5
 
6
+ model = torchvision.models.resnet50(pretrained=True)
7
  model.fc = nn.Linear(model.fc.in_features, 2)
8
  model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')))
9
  model.eval()
 
15
  transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
16
  ])
17
 
18
+ classes = ['Fruta pr贸pria para o consumo', 'Fruta impr贸pria para o consumo']
19
+
20
  import gradio as gr
21
  from PIL import Image
22
 
 
27
  with torch.no_grad():
28
  output = model(image)
29
  _, predicted = torch.max(output.data, 1)
30
+ return classes[predicted.item()]
31
 
32
  # Define the input and output components
33
  image_input = gr.inputs.Image(type="pil", label="Upload Image")