Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,22 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from torchvision.transforms import ToTensor
|
4 |
-
from PIL import Image
|
5 |
-
|
6 |
# Load your PyTorch model
|
7 |
-
model =
|
|
|
|
|
8 |
|
9 |
classes = ['bom', 'ruim']
|
10 |
|
11 |
-
def preprocess(image):
|
12 |
-
image = image.resize((224, 224))
|
13 |
-
image_tensor = ToTensor()(image)
|
14 |
-
image_tensor = image_tensor.unsqueeze(0)
|
15 |
-
return image_tensor
|
16 |
-
|
17 |
# Define the function for image classification
|
18 |
def classify_image(image):
|
19 |
-
image_tensor =
|
20 |
|
21 |
# Perform inference using your PyTorch model
|
22 |
with torch.no_grad():
|
23 |
model.eval()
|
24 |
outputs = model(image_tensor)
|
25 |
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
# Define the Gradio interface
|
30 |
inputs = gr.Image()
|
@@ -32,5 +24,4 @@ outputs = gr.Label(num_top_classes=1)
|
|
32 |
|
33 |
interface = gr.Interface(fn=classify_image, inputs=inputs, outputs=outputs)
|
34 |
|
35 |
-
# Launch the interface
|
36 |
interface.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Load your PyTorch model
|
2 |
+
model = resnet50(pretrained=False)
|
3 |
+
model.fc = nn.Linear(model.fc.in_features, 2)
|
4 |
+
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')))
|
5 |
|
6 |
classes = ['bom', 'ruim']
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# Define the function for image classification
|
9 |
def classify_image(image):
|
10 |
+
image_tensor = ToTensor()(image).unsqueeze(0)
|
11 |
|
12 |
# Perform inference using your PyTorch model
|
13 |
with torch.no_grad():
|
14 |
model.eval()
|
15 |
outputs = model(image_tensor)
|
16 |
|
17 |
+
_, predicted = torch.max(outputs.data, 1)
|
18 |
+
return classes[predicted.item()]
|
19 |
+
|
20 |
|
21 |
# Define the Gradio interface
|
22 |
inputs = gr.Image()
|
|
|
24 |
|
25 |
interface = gr.Interface(fn=classify_image, inputs=inputs, outputs=outputs)
|
26 |
|
|
|
27 |
interface.launch(debug=True)
|