import math import os import warnings from functools import partial import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from timm.models.layers import to_2tuple from torch.utils.data import Dataset from torchaudio.functional import resample import pickle def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x def drop_path(x, drop_prob: float = 0., training: bool = False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_hw = (img_size[1] // patch_size[1], img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) self.img_size = img_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature # map for all networks, the feature metadata has reliable channel and stride info, but using # stride to calc feature dim requires info about padding of each stage that isn't captured. training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) feature_dim = self.backbone.feature_info.channels()[-1] self.num_patches = feature_size[0] * feature_size[1] self.proj = nn.Linear(feature_dim, embed_dim) def forward(self, x): x = self.backbone(x)[-1] x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x class TimmVisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm): super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models if hybrid_backbone is not None: self.patch_embed = HybridEmbed( hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) else: self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(depth)]) self.norm = norm_layer(embed_dim) # NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here # self.repr = nn.Linear(embed_dim, representation_size) # self.repr_act = nn.Tanh() # Classifier head self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x) return x[:, 0] def forward(self, x): x = self.forward_features(x) x = self.head(x) return x class VisionTransformer(TimmVisionTransformer): """ Vision Transformer with support for global average pooling """ def __init__(self, **kwargs): super(VisionTransformer, self).__init__(**kwargs) norm_layer = kwargs['norm_layer'] embed_dim = kwargs['embed_dim'] self.fc_norm = norm_layer(embed_dim) del self.norm # remove the original norm def interpolate_pos_encoding(self, x, embed): new_patches = x.shape[1] old_patches = embed.shape[1] w = 8 h = int(new_patches / w) if new_patches == old_patches: return embed dim = x.shape[-1] pos_embed = nn.functional.interpolate( embed.reshape(1, 64, 8, dim).permute(0, 3, 1, 2), size=(h, w), mode='bicubic', ) pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return pos_embed def forward(self, x): B = x.shape[0] x = self.patch_embed(x) x = x + self.interpolate_pos_encoding(x, self.pos_embed[:, 1:, :]) cls_token = self.cls_token + self.pos_embed[:, :1, :] cls_tokens = cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = self.pos_drop(x) for blk in self.blocks: x = blk(x) # x = x[:, 1:, :].mean(dim=1) # global pool without cls token # outcome = self.fc_norm(x) return x[:, 1:, :].reshape(B, -1, 8, 768).permute(0, 3, 2, 1), x[:, 0] class NewPatchEmbed(nn.Module): """ Flexible Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, stride=10): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) stride = to_2tuple(stride) self.img_size = img_size self.patch_size = patch_size self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride) # with overlapped patches _, _, h, w = self.get_output_shape(img_size) # n, emb_dim, h, w self.patch_hw = (h, w) self.num_patches = h * w def get_output_shape(self, img_size): # todo: don't be lazy.. return self.proj(torch.randn(1, 1, img_size[0], img_size[1])).shape def forward(self, x): x = self.proj(x) x = x.flatten(2).transpose(1, 2) return x def pca(image_feats_list, dim=3, fit_pca=None): from sklearn.decomposition import PCA device = image_feats_list[0].device def flatten(tensor, target_size=None): if target_size is not None and fit_pca is None: F.interpolate(tensor, (target_size, target_size), mode="bilinear") B, C, H, W = tensor.shape return feats.permute(1, 0, 2, 3).reshape(C, B * H * W).permute(1, 0).detach().cpu() if len(image_feats_list) > 1 and fit_pca is None: target_size = image_feats_list[0].shape[2] else: target_size = None flattened_feats = [] for feats in image_feats_list: flattened_feats.append(flatten(feats, target_size)) x = torch.cat(flattened_feats, dim=0) if fit_pca is None: fit_pca = PCA(n_components=dim, svd_solver="arpack").fit(np.nan_to_num(x.detach().numpy())) reduced_feats = [] for feats in image_feats_list: x_red = torch.from_numpy(fit_pca.transform(flatten(feats))) x_red -= x_red.min(dim=0, keepdim=True).values x_red /= x_red.max(dim=0, keepdim=True).values B, C, H, W = feats.shape reduced_feats.append(x_red.reshape(B, H, W, dim).permute(0, 3, 1, 2).to(device)) return reduced_feats, fit_pca class AudiosetDataset(Dataset): def __init__(self, audio_conf): self.audio_conf = audio_conf self.melbins = self.audio_conf.get('num_mel_bins') self.dataset = self.audio_conf.get('dataset') self.norm_mean = self.audio_conf.get('mean') self.norm_std = self.audio_conf.get('std') print('Dataset: {}, mean {:.3f} and std {:.3f}'.format(self.dataset, self.norm_mean, self.norm_std)) print(f'size of dataset {self.__len__()}') def _wav2fbank(self, filename): sample_rate = 16000 target_length = 10 waveform, obs_sr = torchaudio.load(filename) waveform = waveform[0] if obs_sr != sample_rate: waveform = resample(waveform, obs_sr, sample_rate) original_length = waveform.shape[0] padding = target_length * sample_rate - original_length if padding > 0: m = torch.nn.ZeroPad2d((0, padding)) waveform = m(waveform) else: waveform = waveform[:target_length * sample_rate] waveform = waveform - waveform.mean() # 498 128, 998, 128 fbank = torchaudio.compliance.kaldi.fbank( waveform.unsqueeze(0), htk_compat=True, sample_frequency=sample_rate, use_energy=False, window_type='hanning', num_mel_bins=128, dither=0.0, frame_shift=10) normed_fbank = (fbank - self.norm_mean) / (self.norm_std * 2) return normed_fbank def __getitem__(self, index): datum = {"wav": "../../samples/example.wav"} fbank = self._wav2fbank(datum['wav']) fbank = fbank.transpose(0, 1).unsqueeze(0) # 1, 128, 1024 (...,freq,time) fbank = torch.transpose(fbank.squeeze(), 0, 1) # time, freq # the output fbank shape is [time_frame_num, frequency_bins], e.g., [1024, 128] return fbank.unsqueeze(0) def __len__(self): return 1 class AudioMAE(nn.Module): def __init__(self, output_path, finetuned): super().__init__() # build model model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), num_classes=527, drop_path_rate=0.1) img_size = (1024, 128) # 1024, 128 emb_dim = 768 model.patch_embed = NewPatchEmbed( img_size=img_size, patch_size=(16, 16), in_chans=1, embed_dim=emb_dim, stride=16) num_patches = model.patch_embed.num_patches model.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, emb_dim), requires_grad=False) if finetuned: fn = "audiomae_finetuned.pth" else: fn = "audiomae.pth" checkpoint = torch.load(os.path.join(output_path, 'models', fn), map_location='cpu') checkpoint_model = checkpoint['model'] state_dict = model.state_dict() for k in ['head.weight', 'head.bias']: if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] msg = model.load_state_dict(checkpoint_model, strict=False) print(msg) model = model.eval() self.model = model self.config = dict(output_path=output_path, finetuned=finetuned) def forward(self, audio, include_cls): patch_tokens, cls_token = self.model(audio) if include_cls: return patch_tokens, cls_token else: return patch_tokens if __name__ == '__main__': import os device = torch.device("cuda:2") torch.manual_seed(0) np.random.seed(0) model = AudioMAE("../../", True).to(device) audio_conf_val = { 'num_mel_bins': 128, 'target_length': 1024, 'dataset': "audioset", 'mode': 'val', 'mean': -4.2677393, 'std': 4.5689974, } dataset = AudiosetDataset(audio_conf=audio_conf_val) batch = dataset[0].unsqueeze(0).to(device) embeddings = model(batch, include_cls=False) import matplotlib.pyplot as plt with torch.no_grad(): [pca_feats], _ = pca([embeddings]) plt.imshow(pca_feats.cpu().squeeze(0).permute(1, 2, 0)) plt.show() print("here") print("here")