File size: 11,739 Bytes
1ea89dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from unik3d.utils.constants import VERBOSE
from unik3d.utils.geometric import downsample, erode
from unik3d.utils.misc import profile_method

from .utils import (FNS, REGRESSION_DICT, ind2sub, masked_mean,
                    masked_quantile, ssi, ssi_nd)


def sample_strong_edges(edges_img, quantile=0.95, reshape=8):
    # flat
    edges_img = F.interpolate(
        edges_img, scale_factor=1 / reshape, mode="bilinear", align_corners=False
    )
    edges_img_flat = edges_img.flatten(1)

    # Find strong edges
    edges_mask = edges_img_flat > torch.quantile(
        edges_img_flat, quantile, dim=-1, keepdim=True
    )
    num_samples = edges_mask.sum(dim=-1)
    if (num_samples < 10).any():
        # sample random edges where num_samples < 2
        random = torch.rand_like(edges_img_flat[num_samples < 10, :]) > quantile
        edges_mask[num_samples < 10, :] = torch.logical_or(
            edges_mask[num_samples < 10, :], random
        )
        num_samples = edges_mask.sum(dim=-1)

    min_samples = num_samples.min()

    # Compute the coordinates of the strong edges as B, N, 2
    edges_coords = torch.stack(
        [torch.nonzero(x, as_tuple=False)[:min_samples].squeeze() for x in edges_mask]
    )
    edges_coords = (
        torch.stack(ind2sub(edges_coords, edges_img.shape[-1]), dim=-1) * reshape
    )
    return edges_coords


@torch.jit.script
def extract_patches(tensor, sample_coords, patch_size: tuple[int, int] = (32, 32)):
    """
    Extracts patches around specified edge coordinates, with zero padding.

    Parameters:
    - tensor: tenosr to be gatherd based on sampling (B, 1, H, W).
    - sample_coords: Batch of edge coordinates as a PyTorch tensor of shape (B, num_coords, 2).
    - patch_size: Tuple (width, height) representing the size of the patches.

    Returns:
    - Patches as a PyTorch tensor of shape (B, num_coords, patch_height, patch_width).
    """

    N, _, H, W = tensor.shape
    device = tensor.device
    dtype = tensor.dtype
    patch_width, patch_height = patch_size
    pad_width = patch_width // 2
    pad_height = patch_height // 2

    # Pad the RGB images for both sheep
    tensor_padded = F.pad(
        tensor,
        (pad_width, pad_width, pad_height, pad_height),
        mode="constant",
        value=0.0,
    )

    # Adjust edge coordinates to account for padding
    sample_coords_padded = sample_coords + torch.tensor(
        [pad_height, pad_width], dtype=dtype, device=device
    ).reshape(1, 1, 2)

    # Calculate the indices for gather operation
    x_centers = sample_coords_padded[:, :, 1].int()
    y_centers = sample_coords_padded[:, :, 0].int()

    all_patches = []
    for tensor_i, x_centers_i, y_centers_i in zip(tensor_padded, x_centers, y_centers):
        patches = []
        for x_center, y_center in zip(x_centers_i, y_centers_i):
            y_start, y_end = y_center - pad_height, y_center + pad_height + 1
            x_start, x_end = x_center - pad_width, x_center + pad_width + 1
            patches.append(tensor_i[..., y_start:y_end, x_start:x_end])
        all_patches.append(torch.stack(patches, dim=0))

    return torch.stack(all_patches, dim=0).reshape(N, -1, patch_height * patch_width)


class LocalSSI(nn.Module):
    def __init__(
        self,
        weight: float,
        output_fn: str = "sqrt",
        patch_size: tuple[int, int] = (32, 32),
        min_samples: int = 4,
        num_levels: int = 4,
        fn: str = "l1",
        rescale_fn: str = "ssi",
        input_fn: str = "linear",
        quantile: float = 0.1,
        gamma: float = 1.0,
        alpha: float = 1.0,
        relative: bool = False,
        eps: float = 1e-5,
    ):
        super(LocalSSI, self).__init__()
        self.name: str = self.__class__.__name__
        self.weight = weight
        self.output_fn = FNS[output_fn]
        self.input_fn = FNS[input_fn]
        self.fn = REGRESSION_DICT[fn]
        self.min_samples = min_samples
        self.eps = eps
        patch_logrange = np.linspace(
            start=np.log2(min(patch_size)),
            stop=np.log2(max(patch_size)),
            endpoint=True,
            num=num_levels + 1,
        )
        self.patch_logrange = [
            (x, y) for x, y in zip(patch_logrange[:-1], patch_logrange[1:])
        ]
        self.rescale_fn = eval(rescale_fn)
        self.quantile = quantile
        self.gamma = gamma
        self.alpha = alpha
        self.relative = relative

    @profile_method(verbose=VERBOSE)
    @torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
    def forward(
        self,
        input: torch.Tensor,
        target: torch.Tensor,
        mask: torch.Tensor,
        quality: torch.Tensor = None,
        down_ratio: int = 1,
        *args,
        **kwargs,
    ) -> torch.Tensor:
        mask = mask.bool()

        if down_ratio > 1:
            input = downsample(input, down_ratio)
            target = downsample(target, down_ratio)
            # downsample will ignore 0s in the patch "min", if there is a 1 -> set mask to 1 there
            mask = downsample(mask.float(), down_ratio).bool()

        input = self.input_fn(input.float())
        target = self.input_fn(target.float())
        B, C, H, W = input.shape
        total_errors = []

        # save = random() < - 0.001 and is_main_process()
        for ii, patch_logrange in enumerate(self.patch_logrange):

            log_kernel = (
                np.random.uniform(*patch_logrange)
                if self.training
                else np.mean(patch_logrange)
            )
            kernel_size = int(
                (2**log_kernel) * min(input.shape[-2:])
            )  # always smaller than min_shape
            kernel_size = (kernel_size, kernel_size)
            stride = (int(kernel_size[0] * 0.9), int(kernel_size[1] * 0.9))
            # stride = kernel_size

            # unfold is always exceeding right/bottom, roll image only negative
            # to have them back in the unfolding window
            max_roll = (
                (W - kernel_size[1]) % stride[1],
                (H - kernel_size[0]) % stride[0],
            )
            roll_x, roll_y = np.random.randint(-max_roll[0], 1), np.random.randint(
                -max_roll[1], 1
            )
            input_fold = torch.roll(input, shifts=(roll_y, roll_x), dims=(2, 3))
            target_fold = torch.roll(target, shifts=(roll_y, roll_x), dims=(2, 3))
            mask_fold = torch.roll(mask.float(), shifts=(roll_y, roll_x), dims=(2, 3))

            # unfold in patches
            input_fold = F.unfold(
                input_fold, kernel_size=kernel_size, stride=stride
            ).permute(
                0, 2, 1
            )  # B N C*H_p*W_p
            target_fold = F.unfold(
                target_fold, kernel_size=kernel_size, stride=stride
            ).permute(0, 2, 1)
            mask_fold = (
                F.unfold(mask_fold, kernel_size=kernel_size, stride=stride)
                .bool()
                .permute(0, 2, 1)
            )

            # calculate error patchwise, then mean over patch, then over image based if sample size is significant
            input_fold, target_fold, _ = self.rescale_fn(
                input_fold, target_fold, mask_fold, dim=(-1,)
            )
            error = self.fn(
                input_fold - target_fold, alpha=self.alpha, gamma=self.gamma
            )

            # calculate elements more then 95 percentile and lower than 5percentile of error
            if quality is not None:
                N_patches = mask_fold.shape[1]
                for quality_level in [1, 2]:
                    current_quality = quality == quality_level
                    if current_quality.sum() > 0:
                        error_qtl = error[current_quality].detach()
                        mask_qtl = error_qtl < masked_quantile(
                            error_qtl,
                            mask_fold[current_quality],
                            dims=[2],
                            q=1 - self.quantile * quality_level,
                        ).view(-1, N_patches, 1)
                        mask_fold[current_quality] = (
                            mask_fold[current_quality] & mask_qtl
                        )
            else:
                error_qtl = error.detach()
                mask_fold = mask_fold & (
                    error_qtl
                    < masked_quantile(
                        error_qtl, mask_fold, dims=[2], q=1 - self.quantile
                    ).view(B, -1, 1)
                )

            valid_patches = mask_fold.sum(dim=-1) >= self.min_samples
            error_mean_patch = masked_mean(error, mask_fold, dim=(-1,)).squeeze(-1)
            error_mean_image = self.output_fn(error_mean_patch.clamp(min=self.eps))
            error_mean_image = masked_mean(
                error_mean_image, mask=valid_patches, dim=(-1,)
            )
            total_errors.append(error_mean_image.squeeze(-1))

        # global
        input_rescale = input.reshape(B, C, -1).clone()
        target_rescale = target.reshape(B, C, -1)
        mask = mask.reshape(B, 1, -1).clone()
        input, target, _ = self.rescale_fn(
            input_rescale,
            target_rescale,
            mask,
            dim=(-1,),
            target_info=target_rescale.norm(dim=1, keepdim=True),
            input_info=input_rescale.norm(dim=1, keepdim=True),
        )
        error = input - target
        error = error.norm(dim=1) if C > 1 else error.squeeze(1)
        if self.relative:
            error = error * torch.log(
                1.0 + 10.0 / target_rescale.norm(dim=1).clip(min=0.01)
            )

        error = self.fn(error, alpha=self.alpha, gamma=self.gamma).squeeze(1)

        mask = mask.squeeze(1)
        valid_patches = mask.sum(dim=-1) >= 3 * self.min_samples  # 30 samples per image
        if quality is not None:
            for quality_level in [1, 2]:
                current_quality = quality == quality_level
                if current_quality.sum() > 0:
                    error_qtl = error[current_quality].detach()
                    mask_qtl = error_qtl < masked_quantile(
                        error_qtl,
                        mask[current_quality],
                        dims=[1],
                        q=1 - self.quantile * quality_level,
                    ).view(-1, 1)
                    mask[current_quality] = mask[current_quality] & mask_qtl
        else:
            error_qtl = error.detach()
            mask = mask & (
                error_qtl
                < masked_quantile(error_qtl, mask, dims=[1], q=1 - self.quantile).view(
                    -1, 1
                )
            )

        error_mean_image = masked_mean(error, mask, dim=(-1,)).squeeze(-1)
        error_mean_image = (
            self.output_fn(error_mean_image.clamp(min=self.eps)) * valid_patches.float()
        )

        total_errors.append(error_mean_image)

        errors = torch.stack(total_errors).mean(dim=0)
        return errors

    @classmethod
    def build(cls, config):
        obj = cls(
            weight=config["weight"],
            patch_size=config["patch_size"],
            output_fn=config["output_fn"],
            min_samples=config["min_samples"],
            num_levels=config["num_levels"],
            input_fn=config["input_fn"],
            quantile=config["quantile"],
            gamma=config["gamma"],
            alpha=config["alpha"],
            rescale_fn=config["rescale_fn"],
            fn=config["fn"],
            relative=config["relative"],
        )
        return obj