File size: 9,836 Bytes
1ea89dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import itertools

import torch
import torch.nn as nn
import torch.nn.functional as F

from unik3d.utils.geometric import dilate, downsample, erode

from .utils import FNS, masked_mean, masked_quantile


class LocalNormal(nn.Module):
    def __init__(
        self,
        weight: float,
        output_fn: str = "sqrt",
        min_samples: int = 4,
        quantile: float = 0.2,
        eps: float = 1e-5,
    ):
        super(LocalNormal, self).__init__()
        self.name: str = self.__class__.__name__
        self.weight = weight
        self.output_fn = FNS[output_fn]
        self.min_samples = min_samples
        self.eps = eps
        self.patch_weight = torch.ones(1, 1, 3, 3, device="cuda")
        self.quantile = quantile

    def bilateral_filter(self, rgb, surf, mask, patch_size=(9, 9)):
        B, _, H, W = rgb.shape
        sigma_surf = 0.4
        sigma_color = 0.3
        sigma_loc = 0.3 * max(H, W)

        grid_y, grid_x = torch.meshgrid(torch.arange(H), torch.arange(W))
        grid = torch.stack([grid_x, grid_y], dim=0).to(rgb.device)
        grid = grid.unsqueeze(0).repeat(B, 1, 1, 1)

        paddings = [patch_size[0] // 2, patch_size[1] // 2]
        rgbd = torch.cat([rgb, grid.float(), surf], dim=1)

        # format to B,H*W,C,H_p*W_p format
        rgbd_neigh = F.pad(rgbd, 2 * paddings, mode="constant")
        rgbd_neigh = F.unfold(rgbd_neigh, kernel_size=patch_size)
        rgbd_neigh = rgbd_neigh.permute(0, 2, 1).reshape(
            B, H * W, 8, -1
        )  # B N 8 H_p*W_p
        mask_neigh = F.pad(mask.float(), 2 * paddings, mode="constant")
        mask_neigh = F.unfold(mask_neigh, kernel_size=patch_size)
        mask_neigh = mask_neigh.permute(0, 2, 1).reshape(B, H * W, -1)
        rgbd = rgbd.permute(0, 2, 3, 1).reshape(B, H * W, 8, 1)  # B H*W 8 1
        rgb_neigh = rgbd_neigh[:, :, :3, :]
        grid_neigh = rgbd_neigh[:, :, 3:5, :]
        surf_neigh = rgbd_neigh[:, :, 5:, :]
        rgb = rgbd[:, :, :3, :]
        grid = rgbd[:, :, 3:5, :]
        surf = rgbd[:, :, 5:, :]

        # calc distance
        rgb_dist = torch.norm(rgb - rgb_neigh, dim=-2, p=2) ** 2
        grid_dist = torch.norm(grid - grid_neigh, dim=-2, p=2) ** 2
        surf_dist = torch.norm(surf - surf_neigh, dim=-2, p=2) ** 2
        rgb_sim = torch.exp(-rgb_dist / 2 / sigma_color**2)
        grid_sim = torch.exp(-grid_dist / 2 / sigma_loc**2)
        surf_sim = torch.exp(-surf_dist / 2 / sigma_surf**2)

        weight = mask_neigh * rgb_sim * grid_sim * surf_sim  # B H*W H_p*W_p
        weight = weight / weight.sum(dim=-1, keepdim=True).clamp(min=1e-5)
        z = (surf_neigh * weight.unsqueeze(-2)).sum(dim=-1)
        return z.reshape(B, H, W, 3).permute(0, 3, 1, 2)

    def get_surface_normal(self, xyz: torch.Tensor, mask: torch.Tensor):
        P0 = xyz
        mask = mask.float()
        normals, masks_valid_triangle = [], []
        combinations = list(itertools.combinations_with_replacement([-2, -1, 1, 2], 2))
        combinations += [c[::-1] for c in combinations]
        # combinations = [(1, 1), (-1, -1), (1, -1), (-1, 1)]
        for shift_0, shift_1 in set(combinations):
            P1 = torch.roll(xyz, shifts=(0, shift_0), dims=(-1, -2))
            P2 = torch.roll(xyz, shifts=(shift_1, 0), dims=(-1, -2))
            if (shift_0 > 0) ^ (shift_1 > 0):
                P1, P2 = P2, P1
            vec1, vec2 = P1 - P0, P2 - P0
            normal = torch.cross(vec1, vec2, dim=1)
            vec1_norm = torch.norm(vec1, dim=1, keepdim=True).clip(min=1e-8)
            vec2_norm = torch.norm(vec2, dim=1, keepdim=True).clip(min=1e-8)
            normal_norm = torch.norm(normal, dim=1, keepdim=True).clip(min=1e-8)
            normals.append(normal / normal_norm)
            is_valid = (
                torch.roll(mask, shifts=(0, shift_0), dims=(-1, -2))
                + torch.roll(mask, shifts=(shift_1, 0), dims=(-1, -2))
                + mask
                == 3
            )
            is_valid = (
                (normal_norm > 1e-6)
                & (vec1_norm > 1e-6)
                & (vec2_norm > 1e-6)
                & is_valid
            )
            masks_valid_triangle.append(is_valid)

        normals = torch.stack(normals, dim=-1)
        mask_valid_triangle = torch.stack(masks_valid_triangle, dim=-1).float()
        mask_valid = mask_valid_triangle.sum(dim=-1)
        normals = (normals * mask_valid_triangle).sum(dim=-1) / mask_valid.clamp(
            min=1.0
        )
        normals_norm = torch.norm(normals, dim=1, keepdim=True).clip(min=1e-8)
        normals = normals / normals_norm
        mask_valid = (
            (mask_valid > 0.001)
            & (~normals.sum(dim=1, keepdim=True).isnan())
            & (normals_norm > 1e-6)
        )
        return normals, mask_valid  # B 3 H W, B 1 H W

    # def get_surface_normal(self, xyz: torch.Tensor, mask: torch.Tensor):
    #     x, y, z = torch.unbind(xyz, dim=1) # B 3 H W
    #     x = x.unsqueeze(1) # B 1 H W
    #     y = y.unsqueeze(1)
    #     z = z.unsqueeze(1)

    #     mask_float = mask.float()
    #     paddings = [self.patch_weight.shape[-2] // 2, self.patch_weight.shape[-1] // 2]
    #     num_samples = F.conv2d(mask_float, weight=self.patch_weight, padding=paddings).clamp(min=1.0) # B 1 H W
    #     mask_invalid = num_samples < self.min_samples

    #     xx = x * x
    #     yy = y * y
    #     zz = z * z
    #     xy = x * y
    #     xz = x * z
    #     yz = y * z
    #     xx_patch = F.conv2d(xx * mask_float, weight=self.patch_weight, padding=paddings) / num_samples
    #     yy_patch = F.conv2d(yy * mask_float, weight=self.patch_weight, padding=paddings) / num_samples
    #     zz_patch = F.conv2d(zz * mask_float, weight=self.patch_weight, padding=paddings) / num_samples
    #     xy_patch = F.conv2d(xy * mask_float, weight=self.patch_weight, padding=paddings) / num_samples
    #     xz_patch = F.conv2d(xz * mask_float, weight=self.patch_weight, padding=paddings) / num_samples
    #     yz_patch = F.conv2d(yz * mask_float, weight=self.patch_weight, padding=paddings) / num_samples

    #     x_patch = F.conv2d(x * mask_float, weight=self.patch_weight, padding=paddings) / num_samples
    #     y_patch = F.conv2d(y * mask_float, weight=self.patch_weight, padding=paddings) / num_samples
    #     z_patch = F.conv2d(z * mask_float, weight=self.patch_weight, padding=paddings) / num_samples

    #     ATA = torch.stack([xx_patch, xy_patch, xz_patch, xy_patch, yy_patch, yz_patch, xz_patch, yz_patch, zz_patch], dim=-1).squeeze(1) # B H W 9
    #     ATA = torch.reshape(ATA, (ATA.shape[0], ATA.shape[1], ATA.shape[2], 3, 3)) # B H W 3 3
    #     eps_identity = torch.eye(3, device=ATA.device, dtype=ATA.dtype).unsqueeze(0) # 1 3 3
    #     ATA = ATA + 1e-6 * eps_identity

    #     AT1 = torch.stack([x_patch, y_patch, z_patch], dim=-1).squeeze(1).unsqueeze(-1) # B H W 3 1

    #     det = torch.linalg.det(ATA)
    #     mask_invalid_inverse = det.abs() < 1e-12
    #     mask_invalid = mask_invalid.squeeze(1) | mask_invalid_inverse
    #     AT1[mask_invalid, :, :] = 0
    #     ATA[mask_invalid, :, :] = eps_identity

    #     ATA_inv = torch.linalg.inv(ATA)
    #     normals = (ATA_inv @ AT1).squeeze(dim=-1) # B H W 3
    #     normals = normals / torch.norm(normals, dim=-1, keepdim=True).clip(min=1e-8)
    #     mask_invalid = mask_invalid | (torch.sum(normals, dim=-1) == 0.0)

    #     # flip normals, based if a * x + b * y + c * z < 0 -> change sign of normals
    #     mean_patch_xyz = AT1.squeeze(-1)
    #     orient_mask = torch.sum(normals * mean_patch_xyz, dim=-1).unsqueeze(-1) > 0
    #     normals = (2 * orient_mask.to(ATA.dtype) - 1) * normals

    #     return normals.permute(0, 3, 1, 2), ~mask_invalid.unsqueeze(1) # B 3 H W, B H W

    @torch.autocast(device_type="cuda", enabled=False, dtype=torch.float32)
    def forward(self, input: torch.Tensor, target: torch.Tensor, mask, valid):
        if not valid.any():
            return 0.0 * input.mean(dim=(1, 2, 3))

        input = input.float()
        target = target.float()

        mask = erode(mask, kernel_size=3)
        target_normal, mask_target = self.get_surface_normal(target[valid], mask[valid])
        input_normal, mask_input = self.get_surface_normal(
            input[valid], torch.ones_like(mask[valid])
        )

        gt_similarity = F.cosine_similarity(input_normal, target_normal, dim=1)  # B H W
        mask_target = (
            mask_target.squeeze(1) & (gt_similarity < 0.999) & (gt_similarity > -0.999)
        )
        error = F.relu((1 - gt_similarity) / 2 - 0.01)

        error_full = torch.ones_like(mask.squeeze(1).float())
        error_full[valid] = error
        mask_full = torch.ones_like(mask.squeeze(1))
        mask_full[valid] = mask_target

        error_qtl = error_full.detach()
        mask_full = mask_full & (
            error_qtl
            < masked_quantile(
                error_qtl, mask_full, dims=[1, 2], q=1 - self.quantile
            ).view(-1, 1, 1)
        )

        loss = masked_mean(error_full, mask=mask_full, dim=(-2, -1)).squeeze(
            dim=(-2, -1)
        )  # B
        loss = self.output_fn(loss)
        return loss

    def von_mises(self, input, target, mask, kappa):
        score = torch.cosine_similarity(input, target, dim=1).unsqueeze(1)
        mask_cosine = torch.logical_and(
            mask, torch.logical_and(score.detach() < 0.999, score.detach() > -0.999)
        )
        nll = masked_mean(
            kappa * (1 - score), mask=mask_cosine, dim=(-1, -2, -3)
        ).squeeze()
        return nll

    @classmethod
    def build(cls, config):
        obj = cls(
            weight=config["weight"],
            output_fn=config["output_fn"],
            quantile=config.get("quantile", 0.2),
        )
        return obj