import numpy as np import torch from torch.utils.data import Dataset class Dummy(Dataset): train_split = None test_split = None def __init__(self, *args, **kwargs): super().__init__() self.dataset = np.arange(1_000_000) def get_single_item(self, idx): # results = {} # results["cam2w"] = torch.eye(4).unsqueeze(0) # results["K"] = torch.eye(3).unsqueeze(0) # results["image"] = torch.zeros(1, 3, 1024, 1024).to(torch.uint8) # results["depth"] = torch.zeros(1, 1, 1024, 1024).to(torch.float32) return { "x": {(0, 0): torch.rand(1, 3, 1024, 1024, dtype=torch.float32)}, "img_metas": {"val": torch.rand(1, 1024, dtype=torch.float32)}, } def __getitem__(self, idx): if isinstance(idx, (list, tuple)): results = [self.get_single_item(i) for i in idx] else: results = self.get_single_item(idx) return results def __len__(self): return len(self.dataset)