import os import h5py import numpy as np import torch from unik3d.datasets.image_dataset import ImageDataset from unik3d.datasets.utils import DatasetFromList class DENSE(ImageDataset): CAM_INTRINSIC = { "ALL": torch.tensor( [ [1177.8614, 0.0, 474.319027], [0.0, 1177.8614, 224.275919], [0.0, 0.0, 1.0], ] ) } min_depth = 0.05 max_depth = 80.0 depth_scale = 255.0 test_split = "train.txt" train_split = "train.txt" hdf5_paths = ["DENSE.hdf5"] def __init__( self, image_shape, split_file, test_mode, benchmark=False, augmentations_db={}, normalize=True, resize_method="hard", mini=1.0, **kwargs, ): super().__init__( image_shape=image_shape, split_file=split_file, test_mode=test_mode, benchmark=benchmark, normalize=normalize, augmentations_db=augmentations_db, resize_method=resize_method, mini=mini, **kwargs, ) self.test_mode = test_mode self.intrisics = {} self.load_dataset() def load_dataset(self): h5file = h5py.File( os.path.join(self.data_root, self.hdf5_paths[0]), "r", libver="latest", swmr=True, ) txt_file = np.array(h5file[self.split_file]) txt_string = txt_file.tostring().decode("ascii")[:-1] # correct the -1 h5file.close() dataset = [] for line in txt_string.split("\n"): image_filename, depth_filename = line.strip().split(" ") sample = [image_filename, depth_filename] dataset.append(sample) if not self.test_mode: dataset = self.chunk(dataset, chunk_dim=1, pct=self.mini) self.dataset = DatasetFromList(dataset) self.log_load_dataset() def get_intrinsics(self, idx, image_name): return self.CAM_INTRINSIC["ALL"].clone() def get_mapper(self): return { "image_filename": 0, "depth_filename": 1, } def pre_pipeline(self, results): results = super().pre_pipeline(results) results["dense"] = [False] * self.num_copies results["quality"] = [1] * self.num_copies return results