import os import sys sys.path.append(os.getcwd()) import json from concurrent.futures import ProcessPoolExecutor from importlib.resources import files from pathlib import Path from tqdm import tqdm import soundfile as sf from datasets.arrow_writer import ArrowWriter import numpy as np import torch import torchaudio def deal_with_audio_dir(audio_dir): sub_result, durations = [], [] vocab_set = set() audio_lists = list(audio_dir.rglob("*.wav")) for line in audio_lists: text_path = line.with_suffix(".normalized.txt") text = open(text_path, "r").read().strip() duration = sf.info(line).duration if duration < 0.4 or duration > 30: continue sub_result.append({"audio_path": str(line), "text": text, "duration": duration}) durations.append(duration) vocab_set.update(list(text)) return sub_result, durations, vocab_set def main(): result = [] duration_list = [] text_vocab_set = set() # process raw data #executor = ProcessPoolExecutor(max_workers=max_workers) #futures = [] # #for subset in tqdm(SUB_SET): # dataset_path = Path(os.path.join(dataset_dir, subset)) # [ # futures.append(executor.submit(deal_with_audio_dir, audio_dir)) # for audio_dir in dataset_path.iterdir() # if audio_dir.is_dir() # ] #for future in tqdm(futures, total=len(futures)): # sub_result, durations, vocab_set = future.result() # result.extend(sub_result) # duration_list.extend(durations) # text_vocab_set.update(vocab_set) #executor.shutdown() train_scp = "/ailab-train/speech/zhanghaomin/datas/v2cdata/test.scp" v2a_path = "/ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output_v2c_s44/" #v2a_path = "/ailab-train/speech/zhanghaomin/codes3/v2a_v2cdata/" with open(train_scp, "r") as fr: for line in fr.readlines(): video, txt, audio = line.strip().split("\t") ####v2a_audio = v2a_path + video.replace("/", "__") + ".flac" v2a_audio = v2a_path + video.replace("/", "__")[:-4] + ".wav" if not os.path.exists(video) or not os.path.exists(audio) or not os.path.exists(v2a_audio): print(video, audio, v2a_audio) continue waveform, sr = torchaudio.load(audio) duration = waveform.shape[-1] / sr waveform_v2a, sr_v2a = torchaudio.load(v2a_audio) duration_v2a = waveform_v2a.shape[-1] / sr_v2a if duration_v2a >= duration: waveform_v2a = waveform_v2a[:, :int(sr_v2a*duration)] else: waveform_v2a = torch.cat([waveform_v2a, torch.zeros([waveform_v2a.shape[0], int(sr_v2a*duration)-waveform_v2a.shape[1]])], dim=1) duration_v2a = duration energy_v2a = [] for i in range(int(duration_v2a/(256/24000))): energy_v2a.append(waveform_v2a[0,int(i*sr_v2a*(256/24000)):int((i+1)*sr_v2a*(256/24000))].abs().mean()) energy_v2a = np.array(energy_v2a) energy_v2a = energy_v2a / max(energy_v2a) #print(len(energy_v2a), max(energy_v2a), min(energy_v2a), energy_v2a.mean()) np.savez(v2a_audio+".npz", energy_v2a) energy = [] for i in range(int(duration/(256/24000))): energy.append(waveform[0,int(i*sr*(256/24000)):int((i+1)*sr*(256/24000))].abs().mean()) energy = np.array(energy) energy = energy / max(energy) #print(len(energy), max(energy), min(energy), energy.mean()) np.savez(audio+".npz", energy) d = {} d["audio_path"] = audio d["text"] = txt d["duration"] = duration d["energy"] = v2a_audio+".npz" result.append(d) duration_list.append(duration) text_vocab_set.update(list(txt)) print(len(result), result[:2]) # 354218 [{'audio_path': '/ailab-train/speech/zhanghaomin/datas/libritts/LibriTTS/train-clean-100/7635/105409/7635_105409_000088_000000.wav', 'text': '"There is no \'but.\' I said, do you remember?"', 'duration': 2.31}, {'audio_path': '/ailab-train/speech/zhanghaomin/datas/libritts/LibriTTS/train-clean-100/7635/105409/7635_105409_000061_000002.wav', 'text': 'They know it.', 'duration': 0.76}] print(len(duration_list), duration_list[:2]) # 354218 [2.31, 0.76] print(len(text_vocab_set)) # 78 # save preprocessed dataset to disk if not os.path.exists(f"{save_dir}"): os.makedirs(f"{save_dir}") print(f"\nSaving to {save_dir} ...") with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer: for line in tqdm(result, desc="Writing to raw.arrow ..."): writer.write(line) # dup a json separately saving duration in case for DynamicBatchSampler ease with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f: json.dump({"duration": duration_list}, f, ensure_ascii=False) # vocab map, i.e. tokenizer with open(f"{save_dir}/vocab.txt", "w") as f: for vocab in sorted(text_vocab_set): f.write(vocab + "\n") print(f"\nFor {dataset_name}, sample count: {len(result)}") print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}") print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours") if __name__ == "__main__": max_workers = 36 tokenizer = "char" # "pinyin" | "char" #SUB_SET = ["train-clean-100", "train-clean-360", "train-other-500"] #dataset_dir = "/ailab-train/speech/zhanghaomin/datas/libritts/LibriTTS" #dataset_name = f"LibriTTS_{'_'.join(SUB_SET)}_{tokenizer}".replace("train-clean-", "").replace("train-other-", "") dataset_name = "v2c_s44_test_char" save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}" print(f"\nPrepare for {dataset_name}, will save to {save_dir}\n") main() # For LibriTTS_100_360_500_char, sample count: 354218 # For LibriTTS_100_360_500_char, vocab size is: 78 # For LibriTTS_100_360_500_char, total 554.09 hours