File size: 10,170 Bytes
7c68c4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
579d6cb
7c68c4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
"""Streamlit interface for OCR/HTR with Kraken"""
import os
import datetime
import random

import streamlit as st

from lib.constants import CONFIG_METADATA
from lib.display_utils import (display_baselines,
                               display_baselines_with_text,
                               prepare_segments,
                               open_image)
from lib.kraken_utils import (load_model_seg,
                              load_model_rec,
                              segment_image,
                              recognize_text)

# === PAGE CONFIGURATION ===
st.set_page_config(layout="wide")

# === I/O UTILS ===
def get_real_path(path: str) -> str:
    """Get absolute path of a file."""
    return os.path.join(os.path.dirname(__file__), path)


def load_random_example_image(folder_path: str):
    """Load a random image from a folder."""
    images = [os.path.join(folder_path, img) for img in os.listdir(folder_path) if img.endswith(('jpg', 'jpeg'))]
    return random.choice(images) if images else None


def write_temporary_model(file_path, custom_model_loaded):
    """Write a temporary model to disk."""
    with open(get_real_path(file_path), "wb") as file:
        file.write(custom_model_loaded.getbuffer())


def load_model_seg_cache(model_path):
    return load_model_seg(model_path)


def load_model_rec_cache(model_path):
    return load_model_rec(model_path)


MODEL_SEG_BLLA = load_model_seg_cache(get_real_path("data/default/blla.mlmodel"))


def load_models(model_rec_in, model_seg_in=None):
    """Generic bridge to load models.
    """
    if model_rec_in is not None:
        try:
            model_rec_out = load_model_rec_cache(model_rec_in)
        except Exception as e:
            st.error(f" ❌ Modèle de reconnaissance non chargé. Erreur : {e}")
            return None, None
    else:
        st.error(" ❌ Modèle de reconnaissance non trouvé.")
        return None, None
    if model_seg_in is not None:
        try:
            model_seg_out = load_model_seg_cache(model_seg_in)
        except Exception as e:
            st.error(f" ❌ Modèle de segmentation non chargé. Erreur : {e}")
            return None, None
    else:
        model_seg_out = MODEL_SEG_BLLA
    return model_rec_out, model_seg_out

# === MODELS EXAMPLES ===


endp_model_rec, endp_model_seg = load_models(model_rec_in=get_real_path("data/endp/models/e-NDP_V7.mlmodel"),
                                             model_seg_in=get_real_path("data/endp/models/e-NDP-seg_V3.mlmodel"))
lectaurep_model_rec = load_model_rec(get_real_path("data/lectaurep/models/lectaurep_base.mlmodel"))
catmus_model_rec = load_model_rec(get_real_path("data/catmus/models/catmus-tiny.mlmodel"))

# === MODELS EXAMPLES CONFIGURATION ===
DEFAULT_CONFIG = {
    'endp': {
        'model_rec': endp_model_rec,
        'model_seg': endp_model_seg,
        'example_images': get_real_path("data/endp/images")
    },
    'lectaurep': {
        'model_rec': lectaurep_model_rec,
        'model_seg': None,
        'example_images': get_real_path("data/lectaurep/images")
    },
    'catmus':{
        'model_rec': catmus_model_rec,
        'model_seg': None,
        'example_images': get_real_path("data/catmus/images")
    }
}


# === USER INTERFACE ===
st.title("📜🦑 Segmentation et Reconnaissance de Texte (OCR/HTR) avec Kraken")
st.markdown("[![https://img.shields.io/badge/Kraken_version-5.2.9-orange](https://img.shields.io/badge/Kraken_version-5.2.9-orange)](https://github.com/mittagessen/kraken)")
st.markdown(
    """
    *⚠️ Cette application est à visée pédagogique ou à des fins de tests uniquement. 
    L'auteur se dégage de toutes responsabilités quant à son usage pour la production.*
    """
)
st.markdown(
    """
    ##### 🔗 Ressources :
    - 📂 Données de tests ou d'entraînement dans l'organisation [HTR United](https://htr-united.github.io/index.html)
    - 📦 Modèles (mlmodel) à tester sur le groupe [OCR/HTR Zenodo](https://zenodo.org/communities/ocr_models/records?q=&l=list&p=1&s=10&sort=newest)
    - 🛠 Évaluer vos prédictions avec l'application [KaMI (Kraken as Model Inspector)](https://huggingface.co/spaces/lterriel/kami-app)
    """,
    unsafe_allow_html=True
)

# Configuration choices
st.sidebar.header("📁 Configuration HTR")

st.sidebar.markdown('---')
button_placeholder = st.sidebar.empty()
success_loaded_models_msg_container = st.sidebar.empty()
download_predictions_placeholder = st.sidebar.empty()
st.sidebar.markdown('---')

config_choice = st.sidebar.radio(
    "Choisissez une configuration :", options=["Custom", "endp (exemple)", "lectaurep (exemple)", "catmus (exemple)"]
)

config_choice_placeholder = st.sidebar.empty()
info_title_desc = st.sidebar.empty()
place_metadata = st.sidebar.empty()
map_config_choice = {
    "Custom": "Custom",
    "endp (exemple)": "endp",
    "lectaurep (exemple)": "lectaurep",
    "catmus (exemple)": "catmus"
}
config_choice = map_config_choice[config_choice]
flag_rec_model = False
flag_seg_model = False
if config_choice != "Custom":
    config = DEFAULT_CONFIG[config_choice]
    config_choice_placeholder.success(f"Configuration sélectionnée : {CONFIG_METADATA[config_choice]['title']}")
    place_metadata.markdown(CONFIG_METADATA[config_choice]['description'], unsafe_allow_html=True)
    flag_rec_model = True
else:
    st.sidebar.warning("Configuration personnalisée")
    custom_model_seg = st.sidebar.file_uploader(
        "Modèle de segmentation (optionnel)", type=["mlmodel"]
    )
    custom_model_rec = st.sidebar.file_uploader(
        "Modèle de reconnaissance", type=["mlmodel"]
    )
    if custom_model_rec:
        write_temporary_model('tmp/model_rec_temp.mlmodel', custom_model_rec)
        flag_rec_model = True
    if custom_model_seg:
        write_temporary_model('tmp/model_seg_temp.mlmodel', custom_model_seg)
        flag_seg_model = True


# Image choice
flag_image = False
image_source = st.radio("Source de l'image :", options=["Exemple", "Personnalisée"])
info_example_image = st.empty()
info_example_image_description = st.empty()
upload_image_placeholder = st.empty()
col1, col2, col3 = st.columns([1, 1, 1])
image = None
with col1:
    st.markdown("## 🖼 Image Originale")
    st.markdown("---")
    if image_source == "Exemple":
        if config_choice != "Custom":
            example_image_path = load_random_example_image(config["example_images"])
            if example_image_path:
                image = open_image(example_image_path)
                flag_image = True
                info_example_image.info(f"Image d'exemple chargée : {os.path.basename(example_image_path)}")
                info_title_desc.markdown(
                    "<h4>Métadonnées de la configuration</h3>", unsafe_allow_html=True)
                info_example_image_description.markdown(
                    f"Source : {CONFIG_METADATA[config_choice]['examples_info'][os.path.basename(example_image_path)]}",
                    unsafe_allow_html=True)
            else:
                info_example_image.error("Aucune image d'exemple trouvée.")
        else:
            info_example_image.error("Les images d'exemple ne sont pas disponibles pour la configuration personnalisée.")
    else:
        image_file = upload_image_placeholder.file_uploader("Téléchargez votre image :", type=["jpg", "jpeg"])
        if image_file:
            image = open_image(image_file)
            flag_image = True
        else:
            info_example_image.warning("Veuillez télécharger une image.")
    if flag_image:
        st.image(image, use_container_width=True)

# Display the results
col4, col5, col6 = st.columns([1, 1, 1])
if "image" in locals() and flag_rec_model and flag_image:
    button_pred = button_placeholder.button('🚀Lancer la prédiction', key='but_pred')
    if button_pred:
        with st.spinner("⚙️ Chargement des nouveaux modèles..."):
            if config_choice != "Custom":
                model_rec, model_seg = DEFAULT_CONFIG[config_choice]['model_rec'], DEFAULT_CONFIG[config_choice]['model_seg']
            else:
                model_rec = load_model_rec_cache(get_real_path('tmp/model_rec_temp.mlmodel')) if flag_rec_model else None
                model_seg = load_model_seg_cache(get_real_path('tmp/model_seg_temp.mlmodel')) if flag_seg_model else None
            success_loaded_models_msg_container.success("✅️ Configuration OK!")

        with col2:
            st.markdown("## ✂️Segmentation")
            st.markdown("---")
            with st.spinner("⚙️ Segmentation en cours..."):
                baseline_seg = segment_image(image, model_seg)
                baselines, boundaries = prepare_segments(baseline_seg)
            fig1, fig2 = display_baselines(image, baselines, boundaries)
            st.pyplot(fig1)

        with col3:
            st.markdown("## ✍️ Texte")
            st.markdown("---")
            with st.spinner("⚙️ Reconnaissance en cours..."):
                pred = recognize_text(model_rec, image, baseline_seg)
                lines = [record.prediction.strip() for record in pred]
                lines_with_idx = [f"{idx}: {line}" for idx, line in enumerate(lines)]
            st.text_area(label='', value="\n".join(lines), height=570, label_visibility="collapsed")
            date = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")

        with col4:
            st.markdown("## ✂ Segmentation (Index)")
            st.markdown("---")
            st.pyplot(fig2)

        with col5:
            st.markdown("## ✏ Texte (Index)")
            st.markdown("---")
            st.text_area(label='', value="\n".join(lines_with_idx), height=570, label_visibility="collapsed")

        with col6:
            st.markdown("## 🔎 Texte (Image)")
            st.markdown("---")
            st.pyplot(display_baselines_with_text(image, baselines, lines))

        download_predictions_placeholder.download_button(
            "💾 Télécharger votre prédiction (txt)",
            "\n".join(lines),
            file_name=f"prediction_{date}.txt",
        )