Spaces:
Running
Running
File size: 26,091 Bytes
611167a 2dcf626 50eff50 8bdf0b7 086869b 90fa8f8 f3c7c3a 90fa8f8 086869b 8bd9b43 50eff50 611167a f3c7c3a 9e9cd21 8bd9b43 611167a da6fd85 611167a da6fd85 611167a 0407e54 611167a 4dd2229 34574db 611167a 0407e54 611167a a0f4c64 ddffe2a a0f4c64 086869b 90fa8f8 7a48571 086869b 8bdf0b7 90fa8f8 3fff924 90fa8f8 3fff924 90fa8f8 8bdf0b7 30a7253 8bdf0b7 fac423f 8bdf0b7 07857f0 ec14a63 07857f0 37b4732 07857f0 fac423f 07857f0 fac423f 07857f0 8bdf0b7 07857f0 8bdf0b7 07857f0 8bdf0b7 652a95d 8bdf0b7 50eff50 8bdf0b7 07857f0 50eff50 90fa8f8 50eff50 90fa8f8 086869b 50eff50 07857f0 086869b 50eff50 086869b 50eff50 90fa8f8 07857f0 50eff50 90fa8f8 50eff50 90fa8f8 086869b 50eff50 90fa8f8 50eff50 90fa8f8 50eff50 086869b 90fa8f8 086869b 90fa8f8 086869b 90fa8f8 086869b 90fa8f8 086869b 8bdf0b7 50eff50 8bd9b43 50eff50 e485eec 50eff50 90fa8f8 50eff50 90fa8f8 50eff50 e485eec 50eff50 d6ccd16 50eff50 e485eec 50eff50 90fa8f8 8bdf0b7 90fa8f8 8bdf0b7 50eff50 e485eec 50eff50 e485eec 50eff50 086869b 50eff50 d6ccd16 e485eec 50eff50 e485eec 50eff50 e485eec 50eff50 a30acd1 e8fa94c 0937137 e05306a 4dd2229 e8fa94c 4620936 cd38113 4620936 613eadf 652a95d 8bfc493 e05306a a0f4c64 760ef75 e8fa94c e05306a 611167a a0f4c64 34574db a0f4c64 50eff50 a0f4c64 e485eec 50eff50 eded521 50eff50 e485eec 50eff50 cd38113 54a8aa5 50eff50 eded521 e485eec cd38113 54a8aa5 1c5e817 e580bc7 e485eec cd38113 54a8aa5 1c5e817 e580bc7 50eff50 e485eec 0407e54 e485eec 50eff50 0407e54 e485eec 50eff50 ca8daba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 |
from __future__ import annotations
import os
import gradio as gr
import json
import random
from datetime import datetime
from typing import Dict, List, Tuple
import hashlib
import itertools
from datasets import load_dataset, Dataset, DatasetDict
from huggingface_hub import HfApi, create_repo, repo_exists, Repository
from huggingface_hub import HfFolder
import shutil
import threading
import json
from collections.abc import Iterable
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
HF_TOKEN = os.environ.get("HF_TOKEN")
os.environ['HF_AUTH'] = HF_TOKEN
HfApi(token=HF_TOKEN)
USER_IDS = set(json.loads(os.environ.get("USER_IDS")) + json.loads(os.environ.get("USER_IDS_2")))
class Soft(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.indigo,
secondary_hue: colors.Color | str = colors.indigo,
neutral_hue: colors.Color | str = colors.gray,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
text_size: sizes.Size | str = sizes.text_md,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
# fonts.LocalFont("Montserrat"),
"ui-sans-serif",
"system-ui",
"sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
# fonts.LocalFont("IBM Plex Mono"),
"ui-monospace",
"Consolas",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
self.name = "soft"
super().set(
# Colors
background_fill_primary="*neutral_50",
slider_color="*primary_500",
slider_color_dark="*primary_600",
# Shadows
shadow_drop="0 1px 4px 0 rgb(0 0 0 / 0.1)",
shadow_drop_lg="0 2px 5px 0 rgb(0 0 0 / 0.2)",
# Block Labels
block_background_fill="white",
block_label_padding="*spacing_sm *spacing_md",
block_label_background_fill="*primary_100",
block_label_background_fill_dark="*primary_600",
block_label_radius="*radius_md",
block_label_text_size="*text_md",
block_label_text_weight="600",
block_label_text_color="*primary_500",
block_label_text_color_dark="white",
block_title_radius="*block_label_radius",
block_title_padding="*block_label_padding",
block_title_background_fill="*block_label_background_fill",
block_title_text_weight="600",
block_title_text_color="*primary_500",
block_title_text_color_dark="white",
block_label_margin="*spacing_md",
# Inputs
input_background_fill="white",
input_border_color="*neutral_100",
input_shadow="*shadow_drop",
input_shadow_focus="*shadow_drop_lg",
checkbox_shadow="none",
# Buttons
shadow_spread="6px",
button_primary_shadow="*shadow_drop_lg",
button_primary_shadow_hover="*shadow_drop_lg",
button_primary_shadow_active="*shadow_inset",
button_secondary_shadow="*shadow_drop_lg",
button_secondary_shadow_hover="*shadow_drop_lg",
button_secondary_shadow_active="*shadow_inset",
checkbox_label_shadow="*shadow_drop_lg",
button_primary_background_fill="*primary_500",
button_primary_background_fill_hover="*primary_400",
button_primary_background_fill_hover_dark="*primary_500",
button_primary_text_color="white",
button_secondary_background_fill="white",
button_secondary_background_fill_hover="*neutral_100",
button_secondary_background_fill_hover_dark="*primary_500",
button_secondary_text_color="*neutral_800",
button_cancel_background_fill="*button_secondary_background_fill",
button_cancel_background_fill_hover="*button_secondary_background_fill_hover",
button_cancel_background_fill_hover_dark="*button_secondary_background_fill_hover",
button_cancel_text_color="*button_secondary_text_color",
checkbox_label_background_fill_selected="*primary_500",
checkbox_label_background_fill_selected_dark="*primary_600",
checkbox_border_width="1px",
checkbox_border_color="*neutral_100",
checkbox_border_color_dark="*neutral_600",
checkbox_background_color_selected="*primary_600",
checkbox_background_color_selected_dark="*primary_700",
checkbox_border_color_focus="*primary_500",
checkbox_border_color_focus_dark="*primary_600",
checkbox_border_color_selected="*primary_600",
checkbox_border_color_selected_dark="*primary_700",
checkbox_label_text_color_selected="white",
# Borders
block_border_width="0px",
panel_border_width="0px",
)
guideline = open("guidelines.md").read().strip()
# Configuration for the output dataset
ANNOTATIONS_REPO = "ltg/fluency-annotations" # Change to your repo name
DATA_DIR = "annotation_data"
ANNOTATIONS_FILE = os.path.join(DATA_DIR, "train.jsonl")
# Model names for the three responses
MODEL_NAMES = ["mistral-Nemo", "translated-SFT", "on-policy-RL"]
# Create all pairwise comparisons
MODEL_PAIRS = list(itertools.combinations(MODEL_NAMES, 2))
# Initialize repository
def init_repository():
"""Initialize or clone the repository"""
try:
repo = Repository(
local_dir=DATA_DIR,
clone_from=ANNOTATIONS_REPO,
use_auth_token=HF_TOKEN,
repo_type="dataset"
)
repo.git_pull()
return repo
except Exception as e:
print(f"Error initializing repository: {e}")
# Create local directory if repo doesn't exist
os.makedirs(DATA_DIR, exist_ok=True)
return None
# Initialize on startup
annotation_repo = init_repository()
def load_existing_annotations():
"""Load existing annotations from the jsonl file"""
annotations = {}
if os.path.exists(ANNOTATIONS_FILE):
try:
with open(ANNOTATIONS_FILE, "r") as f:
for line in f:
if line.strip():
ann = json.loads(line)
user_id = ann.get("user_id")
if user_id:
if user_id not in annotations:
annotations[user_id] = []
annotations[user_id].append(ann)
print(f"Loaded {sum(len(v) for v in annotations.values())} existing annotations")
except Exception as e:
print(f"Error loading annotations: {e}")
return annotations
def save_annotation_to_file(annotation_data):
"""Save a single annotation to the jsonl file and push to hub"""
global annotation_repo
try:
# Pull latest changes
if annotation_repo:
annotation_repo.git_pull()
# Append to jsonl file
with open(ANNOTATIONS_FILE, "a") as f:
line = json.dumps(annotation_data, ensure_ascii=False)
f.write(f"{line}\n")
# Push to hub asynchronously
if annotation_repo:
annotation_repo.push_to_hub(blocking=False)
except Exception as e:
print(f"Error saving annotation: {e}")
# Try to reinitialize repository
try:
shutil.rmtree(DATA_DIR)
annotation_repo = init_repository()
# Retry saving
with open(ANNOTATIONS_FILE, "a") as f:
line = json.dumps(annotation_data, ensure_ascii=False)
f.write(f"{line}\n")
if annotation_repo:
annotation_repo.push_to_hub(blocking=False)
except Exception as e2:
print(f"Failed to save annotation after retry: {e2}")
def load_dataset_samples():
"""Load and prepare dataset samples with pairwise comparisons"""
try:
# Load the private dataset (requires authentication)
dataset = load_dataset("ltg/fluency-generations", split="train", token=HF_TOKEN)
# Transform dataset into pairwise comparison format
pairwise_samples = []
for item in dataset:
sample_id = item["sample_id"]
prompt = item["prompt"]
responses = item["responses"]
# Create pairwise comparisons for this sample
for model_a, model_b in MODEL_PAIRS:
pairwise_samples.append({
"id": f"{sample_id}_{model_a}_vs_{model_b}",
"original_id": sample_id,
"prompt": prompt,
"response_a": responses[model_a],
"response_b": responses[model_b],
"model_a": model_a,
"model_b": model_b,
"dataset": "NTNU"
})
extra_dataset = load_dataset("ltg/fluency-generations", split="test", token=HF_TOKEN)
extra_pairwise_samples = []
for i, item in enumerate(extra_dataset):
sample_id = item["sample_id"]
prompt = item["prompt"]
responses = item["responses"]
model_a, model_b = MODEL_PAIRS[i % len(MODEL_PAIRS)]
model_a, model_b = (model_a, model_b) if i % 2 == 0 else (model_b, model_a)
extra_pairwise_samples.append({
"id": f"{sample_id}_{model_a}_vs_{model_b}",
"original_id": sample_id,
"prompt": prompt,
"response_a": responses[model_a],
"response_b": responses[model_b],
"model_a": model_a,
"model_b": model_b,
"dataset": "training_examples"
})
return pairwise_samples, extra_pairwise_samples
except Exception as e:
print(f"Error loading dataset: {e}")
print("Using dummy data for testing...")
# Fallback to dummy data for testing
return [
{
"id": "dummy_001_modelA_vs_modelB",
"original_id": "dummy_001",
"prompt": "Test prompt for development",
"response_a": "This is response A for testing.",
"response_b": "This is response B for testing.",
"model_a": "modelA",
"model_b": "modelB",
"dataset": "test"
}
], []
def swap_sample(sample):
return {
"id": str(sample["original_id"]) + '_' + sample["model_b"] + '_vs_' + sample["model_a"],
"original_id": sample["original_id"],
"prompt": sample["prompt"],
"response_a": sample["response_b"],
"response_b": sample["response_a"],
"model_a": sample["model_b"],
"model_b": sample["model_a"],
"dataset": sample["dataset"]
}
# Load dataset on startup
DATASET_SAMPLES, EXTRA_DATASET_SAMPLES = load_dataset_samples()
class AnnotationManager:
def __init__(self):
# Load existing annotations from file
self.annotations = load_existing_annotations()
self.user_states = {}
# Rebuild user states from loaded annotations
for user_id, user_annotations in self.annotations.items():
annotated_ids = [ann["sample_id"] for ann in user_annotations]
self.user_states[user_id] = {
"current_index": 0,
"annotations": annotated_ids
}
def get_user_seed(self, user_id: str) -> int:
"""Generate consistent seed for user"""
return int(hashlib.md5(user_id.encode()).hexdigest(), 16)
def get_user_samples(self, user_id: str) -> List[Dict]:
"""Get shuffled samples for user based on their ID"""
seed = self.get_user_seed(user_id)
samples = DATASET_SAMPLES.copy()
random.Random(seed).shuffle(samples)
samples = [
sample if random.Random(seed + i).randint(0, 1) == 0 else swap_sample(sample)
for i, sample in enumerate(samples)
]
samples = EXTRA_DATASET_SAMPLES.copy() + samples
return samples
def get_next_sample(self, user_id: str) -> Tuple[Dict, int, int]:
"""Get next unannotated sample for user"""
if user_id not in self.user_states:
# Check if user has existing annotations
if user_id in self.annotations:
annotated_ids = [ann["sample_id"] for ann in self.annotations[user_id]]
self.user_states[user_id] = {
"current_index": 0,
"annotations": annotated_ids
}
else:
self.user_states[user_id] = {
"current_index": 0,
"annotations": []
}
samples = self.get_user_samples(user_id)
state = self.user_states[user_id]
# Count total annotations for this user
total_annotated = len(state["annotations"])
# Find next unannotated sample
for idx, sample in enumerate(samples):
if not self.is_annotated(user_id, sample["id"]):
return sample, total_annotated + 1, len(samples)
# All samples annotated
return None, len(samples), len(samples)
def is_annotated(self, user_id: str, sample_id: str) -> bool:
"""Check if user has annotated this sample"""
if user_id not in self.annotations:
return False
return any(ann["sample_id"] == sample_id for ann in self.annotations[user_id])
def save_annotation(self, user_id: str, sample_id: str, choice: str,
model_a: str = None, model_b: str = None,
original_id: str = None, dataset_name: str = None):
"""Save user's annotation and persist to file"""
if user_id not in self.annotations:
self.annotations[user_id] = []
annotation = {
"user_id": user_id,
"sample_id": sample_id,
"original_sample_id": original_id,
"dataset": dataset_name,
"model_a": model_a,
"model_b": model_b,
"choice": choice,
"timestamp": datetime.now().isoformat()
}
# Save to memory
self.annotations[user_id].append(annotation)
# Update user state
if user_id in self.user_states:
self.user_states[user_id]["annotations"].append(sample_id)
else:
self.user_states[user_id] = {
"current_index": 0,
"annotations": [sample_id]
}
# Save to file asynchronously
threading.Thread(
target=save_annotation_to_file,
args=(annotation,)
).start()
print(f"Saved annotation: {annotation}")
def get_user_progress(self, user_id: str) -> Dict:
"""Get user's annotation progress"""
if user_id not in self.annotations:
return {"completed": 0, "total": len(DATASET_SAMPLES)}
completed = len(self.annotations[user_id])
return {"completed": completed, "total": len(DATASET_SAMPLES)}
# Initialize manager
manager = AnnotationManager()
def login(user_id: str) -> Tuple:
"""Handle user login"""
if not user_id or user_id.strip() == "" or user_id.strip() not in USER_IDS:
return (
gr.update(visible=True), # login_interface
gr.update(visible=False), # annotation_interface
"", # user_state
gr.update(value="Please enter a valid ID"), # login_status
gr.update(), # prompt
gr.update(), # response_a
gr.update(), # response_b
gr.update() # progress
)
user_id = user_id.strip()
sample, current, total = manager.get_next_sample(user_id)
if sample is None:
return (
gr.update(visible=True), # login_interface
gr.update(visible=False), # annotation_interface
user_id, # user_state
gr.update(value=f"All {total} samples completed for user: {user_id}! π"), # login_status
gr.update(), # prompt
gr.update(), # response_a
gr.update(), # response_b
gr.update() # progress
)
# Show which models are being compared
model_info = f" | Comparing: {sample.get('model_a', 'A')} vs {sample.get('model_b', 'B')}"
return (
gr.update(visible=False), # login_interface
gr.update(visible=True), # annotation_interface
user_id, # user_state
gr.update(value=""), # login_status
gr.update(value=sample["prompt"]), # prompt
gr.update(value=sample["response_a"]), # response_a
gr.update(value=sample["response_b"]), # response_b
gr.update(value=f"Progress: {current}/{total}") # progress
)
def annotate(choice: str, user_id: str) -> Tuple:
"""Handle annotation submission"""
if not user_id:
return (
gr.update(), # prompt
gr.update(), # response_a
gr.update(), # response_b
gr.update(), # progress
gr.update(value="Error: No user logged in", visible=True) # status
)
# Get current sample to save annotation
sample, _, _ = manager.get_next_sample(user_id)
if sample:
# Map button choice to annotation value
choice_map = {
"a_better": "A is more fluent",
"b_better": "B is more fluent",
"equal": "Equally fluent"
}
# Save with all metadata
manager.save_annotation(
user_id=user_id,
sample_id=sample["id"],
choice=choice_map[choice],
model_a=sample.get("model_a"),
model_b=sample.get("model_b"),
original_id=sample.get("original_id"),
dataset_name=sample.get("dataset")
)
# Get next sample
next_sample, current, total = manager.get_next_sample(user_id)
if next_sample is None:
return (
gr.update(value="All samples completed! Thank you for your annotations."), # prompt
gr.update(value=""), # response_a
gr.update(value=""), # response_b
gr.update(value=f"Progress: {total}/{total} - Complete!"), # progress
gr.update(value="All annotations complete!", visible=True) # status
)
# Show which models are being compared
model_info = f" | Comparing: {next_sample.get('model_a', 'A')} vs {next_sample.get('model_b', 'B')}"
return (
gr.update(value=next_sample["prompt"]), # prompt
gr.update(value=next_sample["response_a"]), # response_a
gr.update(value=next_sample["response_b"]), # response_b
gr.update(value=f"Progress: {current}/{total}"), # progress
gr.update(value="Annotation saved!", visible=True) # status
)
def logout() -> Tuple:
"""Handle user logout"""
return (
gr.update(visible=True), # login_interface
gr.update(visible=False), # annotation_interface
"", # user_state
gr.update(value=""), # login_status
gr.update(value=""), # prompt
gr.update(value=""), # response_a
gr.update(value=""), # response_b
gr.update(value="") # progress
)
# Create Gradio interface
custom_css = """
#login-group {
background-color: white !important;
}
#login-group > * {
background-color: white !important;
}
#login-group .gr-group {
background-color: white !important;
}
#login-group .gr-form {
background-color: white !important;
}
.light-shadow {
box-shadow: 0 1px 4px 0 rgb(0 0 0 / 0.1) !important;
}
/* Target the textbox container */
.no-style-textbox {
border: none !important;
box-shadow: none !important;
}
/* Target both input and textarea elements */
.no-style-textbox input,
.no-style-textbox textarea {
border: none !important;
box-shadow: none !important;
padding: 0 !important;
outline: none !important;
}
/* Target the Gradio textbox wrapper */
.no-style-textbox .gr-textbox {
border: none !important;
box-shadow: none !important;
}
/* Target focus states */
.no-style-textbox input:focus,
.no-style-textbox textarea:focus {
border: none !important;
box-shadow: none !important;
outline: none !important;
}
/* Additional targeting for stubborn Gradio elements */
.no-style-textbox .gr-form,
.no-style-textbox .gr-input {
border: none !important;
box-shadow: none !important;
}
"""
# Create Gradio interface
with gr.Blocks(theme=Soft(font=[gr.themes.GoogleFont("Source Sans Pro"), "Arial"]), title="Dataset Annotation Tool", css=custom_css) as app:
gr.Markdown("# Norwegian Fluency Annotation")
with gr.Accordion("Click here to see the full annotation guidelines:", open=False, elem_classes="light-shadow"):
gr.Markdown(guideline, padding=True)
user_state = gr.State("")
# Login Interface
with gr.Column(visible=True) as login_interface:
with gr.Column(variant="panel", elem_id="login-group", elem_classes="light-shadow"):
gr.Markdown("## Log in", padding=True)
user_id_input = gr.Textbox(
label="Enter your unique annotator ID to begin",
placeholder="Annotator ID"
)
with gr.Row():
login_btn = gr.Button("Login", variant="primary", scale=0.2, min_width=100)
gr.HTML("")
login_status = gr.Markdown("", padding=True)
# Annotation Interface
with gr.Column(visible=False, elem_id="annotation-group") as annotation_interface:
progress_label = gr.Markdown("")
# Row 1: Prompt
with gr.Row(elem_classes="light-shadow"):
prompt_display = gr.Textbox(
label="Prompt",
interactive=False,
lines=1,
elem_classes="no-style-textbox",
autoscroll=False
)
# Row 2: Responses
with gr.Row(elem_classes="light-shadow"):
response_a_display = gr.Textbox(
label="Response A",
interactive=False,
lines=1,
scale=1,
elem_classes="no-style-textbox",
autoscroll=False,
max_lines=100
)
response_b_display = gr.Textbox(
label="Response B",
interactive=False,
lines=1,
scale=1,
elem_classes="no-style-textbox",
autoscroll=False,
max_lines=100
)
# Row 3: Buttons
with gr.Row():
btn_a = gr.Button("A is more fluent", variant="primary")
btn_equal = gr.Button("Equally fluent", variant="primary")
btn_b = gr.Button("B is more fluent", variant="primary")
status_message = gr.Markdown("", visible=False)
with gr.Row(visible=False):
logout_btn = gr.Button("Logout", variant="stop", size="sm")
# Event handlers
login_btn.click(
fn=login,
inputs=[user_id_input],
outputs=[
login_interface,
annotation_interface,
user_state,
login_status,
prompt_display,
response_a_display,
response_b_display,
progress_label
]
)
user_id_input.submit(
fn=login,
inputs=[user_id_input],
outputs=[
login_interface,
annotation_interface,
user_state,
login_status,
prompt_display,
response_a_display,
response_b_display,
progress_label
]
)
btn_a.click(
fn=lambda user_id: annotate("a_better", user_id),
inputs=[user_state],
outputs=[
prompt_display,
response_a_display,
response_b_display,
progress_label,
status_message
]
)
btn_b.click(
fn=lambda user_id: annotate("b_better", user_id),
inputs=[user_state],
outputs=[
prompt_display,
response_a_display,
response_b_display,
progress_label,
status_message
]
)
btn_equal.click(
fn=lambda user_id: annotate("equal", user_id),
inputs=[user_state],
outputs=[
prompt_display,
response_a_display,
response_b_display,
progress_label,
status_message
]
)
logout_btn.click(
fn=logout,
inputs=[],
outputs=[
login_interface,
annotation_interface,
user_state,
login_status,
prompt_display,
response_a_display,
response_b_display,
progress_label
]
)
if __name__ == "__main__":
app.launch() |