Spaces:
Sleeping
Sleeping
File size: 12,044 Bytes
d0d40b6 74dc3aa 0b5d529 bf792db 74dc3aa d0d40b6 74dc3aa 0b5d529 74dc3aa 0b5d529 d0d40b6 0b5d529 74dc3aa d0d40b6 74dc3aa 0b5d529 74dc3aa 0b5d529 74dc3aa 0b5d529 d0d40b6 0b5d529 74dc3aa d0d40b6 0b5d529 d0d40b6 0b5d529 d0d40b6 74dc3aa d0d40b6 0b5d529 d0d40b6 0b5d529 d0d40b6 0b5d529 d0d40b6 0b5d529 d0d40b6 0b5d529 d0d40b6 0b5d529 d0d40b6 0b5d529 d0d40b6 74dc3aa d0d40b6 0b5d529 d0d40b6 74dc3aa d0d40b6 74dc3aa 0b5d529 0d9d255 d0d40b6 74dc3aa d0d40b6 0b5d529 74dc3aa d0d40b6 0b5d529 d0d40b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
# --- START OF FILE app.py (Hugging Face Space code) ---
import torch
import numpy as np
from PIL import Image, ImageDraw # Added ImageDraw for potential visualization within Gradio UI
import gradio as gr
from transformers import CLIPProcessor, CLIPModel
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
import traceback # For better error logging
# --- Check for CUDA and print status ---
if torch.cuda.is_available():
device = "cuda"
print("CUDA is available. Using GPU.")
else:
device = "cpu"
print("CUDA not available. Using CPU.")
# --- End Check ---
# --- Model Loading (add error handling) ---
sam = None
mask_generator = None
clip_model = None
clip_processor = None
try:
print("Loading CLIP model...")
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device).eval()
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
print("CLIP model loaded.")
print("Loading SAM model...")
# Use a smaller/faster model if performance is an issue, e.g., vit_t, if available and checkpoint exists
# sam_checkpoint = "sam_vit_t.pth" # Example for tiny model
# sam_model_type = "vit_t"
sam_checkpoint = "sam_vit_b_01ec64.pth" # Original base model
sam_model_type = "vit_b"
sam = sam_model_registry[sam_model_type](checkpoint=sam_checkpoint).to(device).eval()
# You might adjust SamAutomaticMaskGenerator parameters if needed
# points_per_side=32, pred_iou_thresh=0.88, stability_score_thresh=0.95, crop_n_layers=0, crop_n_points_downscale_factor=1, min_mask_region_area=0
mask_generator = SamAutomaticMaskGenerator(sam)
print("SAM model loaded.")
except Exception as e:
print(f"FATAL: Error loading models: {e}")
print(traceback.format_exc())
# If models fail to load, the app shouldn't run
exit()
# --- End Model Loading ---
# Convert PIL image to numpy
def pil_to_np(pil_img):
return np.array(pil_img.convert("RGB"))
# Convert numpy array to PIL image
def np_to_pil(np_img):
if np_img.dtype != np.uint8:
if np_img.max() <= 1.0 and np_img.min() >= 0.0:
np_img = (np_img * 255).astype(np.uint8)
else:
np_img = np.clip(np_img, 0, 255).astype(np.uint8)
return Image.fromarray(np_img)
# --- EXISTING FUNCTION (for unmasking single prompt) ---
def clip_guided_unmask(original_img, revealed_img, text_prompt):
# --- (Function content remains exactly the same as before) ---
if original_img is None:
print("Error: Original image is required for unmasking.")
return revealed_img
if not isinstance(original_img, Image.Image):
print(f"Error: original_img is not a PIL Image, type is {type(original_img)}")
try: original_img = Image.open(original_img).convert("RGB")
except Exception: return revealed_img
if revealed_img is None:
print("No revealed image provided, creating a black canvas.")
revealed_img = Image.new("RGB", original_img.size, color="black")
elif not isinstance(revealed_img, Image.Image):
print(f"Error: revealed_img is not a PIL Image, type is {type(revealed_img)}")
try: revealed_img = Image.open(revealed_img).convert("RGB")
except Exception:
print("Falling back to black canvas for revealed image.")
revealed_img = Image.new("RGB", original_img.size, color="black")
print(f"Processing unmask request for prompt: '{text_prompt}'")
try:
np_orig = pil_to_np(original_img)
np_reveal = pil_to_np(revealed_img)
print(f"Original image shape: {np_orig.shape}, Revealed image shape: {np_reveal.shape}")
if np_orig.shape != np_reveal.shape:
print(f"Warning: Shapes mismatch. Resizing revealed {np_reveal.shape} to {np_orig.shape}")
revealed_img = revealed_img.resize(original_img.size)
np_reveal = pil_to_np(revealed_img)
print("Generating masks with SAM...")
if np_orig.dtype != np.uint8:
print(f"Warning: Converting original image to uint8 for SAM (original type: {np_orig.dtype})")
np_orig_sam = np.clip(np_orig, 0, 255).astype(np.uint8)
else:
np_orig_sam = np_orig
masks = mask_generator.generate(np_orig_sam)
if not masks:
print("SAM did not generate any masks.")
return revealed_img
print(f"Generated {len(masks)} masks.")
print("Processing text prompt with CLIP...")
prompt_for_clip = text_prompt if text_prompt else "object" # Handle empty prompt
text_inputs = clip_processor(text=[prompt_for_clip], return_tensors="pt", padding=True).to(device)
with torch.no_grad():
text_feat = clip_model.get_text_features(**text_inputs)
text_feat /= text_feat.norm(p=2, dim=-1, keepdim=True)
print("Text features generated.")
best_score = -float('inf')
best_mask_info = None
print("Calculating CLIP scores for masks...")
for i, m in enumerate(masks):
seg = m["segmentation"]
masked_for_clip = np_orig.copy()
masked_for_clip[~seg] = 0
pil_masked_for_clip = np_to_pil(masked_for_clip)
inputs = clip_processor(images=pil_masked_for_clip, return_tensors="pt").to(device)
with torch.no_grad():
image_feat = clip_model.get_image_features(**inputs)
image_feat /= image_feat.norm(p=2, dim=-1, keepdim=True)
sim = (image_feat @ text_feat.T).item()
if sim > best_score:
best_score = sim
best_mask_info = m
print(f"Best score found: {best_score:.4f}")
if best_mask_info is not None:
bbox = best_mask_info['bbox']
x, y, w, h = map(int, bbox)
y_start = max(0, y)
y_end = min(np_orig.shape[0], y + h)
x_start = max(0, x)
x_end = min(np_orig.shape[1], x + w)
print(f"Applying best mask's bounding box: [{x_start}:{x_end}, {y_start}:{y_end}]")
if y_end > y_start and x_end > x_start:
np_reveal[y_start:y_end, x_start:x_end] = np_orig[y_start:y_end, x_start:x_end]
else:
print(f"Warning: Invalid bounding box dimensions calculated ({w}x{h} at {x},{y}). Skipping reveal.")
else:
print("No suitable mask found based on the prompt.")
final_revealed_pil = np_to_pil(np_reveal)
print("Unmask processing complete.")
return final_revealed_pil
except Exception as e:
print(f"Error during clip_guided_unmask: {e}")
print(traceback.format_exc())
return revealed_img
# --- NEW FUNCTION (to get all SAM bounding boxes) ---
def get_all_sam_bboxes(original_img):
"""
Generates all masks for an image using SAM and returns their bounding boxes.
Input: PIL Image
Output: List of bounding boxes [[x, y, w, h], ...] or None on error
"""
if original_img is None:
print("Error: Original image is required for getting bboxes.")
return None # Return None or empty list to indicate error
# Ensure input is PIL Image
if not isinstance(original_img, Image.Image):
print(f"Error: get_all_sam_bboxes expects a PIL Image, got {type(original_img)}")
try: original_img = Image.open(original_img).convert("RGB")
except Exception as e:
print(f"Error converting input to PIL Image: {e}")
return None
print("Processing request to get all SAM bounding boxes...")
try:
np_orig = pil_to_np(original_img)
print(f"Original image shape for bbox generation: {np_orig.shape}")
# Ensure uint8 for SAM
if np_orig.dtype != np.uint8:
print(f"Warning: Converting original image to uint8 for SAM (original type: {np_orig.dtype})")
np_orig_sam = np.clip(np_orig, 0, 255).astype(np.uint8)
else:
np_orig_sam = np_orig
print("Generating masks with SAM...")
masks = mask_generator.generate(np_orig_sam)
if not masks:
print("SAM did not generate any masks.")
return [] # Return empty list if no masks
print(f"Generated {len(masks)} masks.")
# Extract bounding boxes [x, y, w, h]
bboxes = [m['bbox'] for m in masks if 'bbox' in m]
# Ensure all elements are standard Python ints/floats for JSON serialization
bboxes_serializable = [[int(b[0]), int(b[1]), int(b[2]), int(b[3])] for b in bboxes]
print(f"Extracted {len(bboxes_serializable)} bounding boxes.")
return bboxes_serializable # Return the list of boxes
except Exception as e:
print(f"Error during get_all_sam_bboxes: {e}")
print(traceback.format_exc())
return None # Indicate error
# --- Gradio Interface using Blocks to support multiple API endpoints ---
print("Setting up Gradio interface using Blocks...")
with gr.Blocks() as demo:
gr.Markdown("# CLIP-SAM Guided Unmasking and BBox Extraction")
with gr.Tab("Interactive Unmasking"):
with gr.Row():
img_input_unmask = gr.Image(type="pil", label="Original Image")
img_revealed_input = gr.Image(type="pil", label="Current Revealed Image (leave empty on first run)")
img_output_unmask = gr.Image(type="pil", label="Updated Reveal")
prompt_input_unmask = gr.Textbox(label="Text Prompt (e.g., 'a red car', 'the dog')")
unmask_button = gr.Button("Unmask Prompt")
with gr.Tab("Get All Bounding Boxes"):
with gr.Row():
img_input_bbox = gr.Image(type="pil", label="Original Image")
# Output for visualization in UI (optional)
img_output_bbox_viz = gr.Image(type="pil", label="Image with All BBoxes (Visualization)")
# Output for API call (JSON)
json_output_bbox = gr.JSON(label="Bounding Boxes ([x, y, w, h])")
bbox_button = gr.Button("Get All SAM Bounding Boxes")
# --- Define API endpoints ---
# Endpoint for the interactive unmasking function
unmask_button.click(
fn=clip_guided_unmask,
inputs=[img_input_unmask, img_revealed_input, prompt_input_unmask],
outputs=img_output_unmask,
api_name="predict" # Keep the original API name for compatibility
)
# Helper function to draw boxes for the UI visualization part
def draw_boxes_on_image_for_ui(original_img):
bboxes = get_all_sam_bboxes(original_img)
if bboxes is None or not bboxes:
# Return original image or error message if desired
print("No bounding boxes found or error occurred.")
return original_img, [] # Return original image and empty list
img_copy = original_img.copy()
draw = ImageDraw.Draw(img_copy)
print(f"Drawing {len(bboxes)} boxes for UI preview...")
for bbox in bboxes:
x, y, w, h = map(int, bbox)
x1, y1 = x + w, y + h
# Draw rectangle outline [x0, y0, x1, y1]
draw.rectangle([x, y, x1, y1], outline="red", width=2)
print("Finished drawing boxes for UI.")
return img_copy, bboxes # Return image with boxes AND the json data
# Endpoint for getting all bounding boxes (and visualizing in UI)
bbox_button.click(
fn=draw_boxes_on_image_for_ui, # Use helper that calls get_all_sam_bboxes
inputs=[img_input_bbox],
outputs=[img_output_bbox_viz, json_output_bbox], # Output to both components
api_name="get_boxes" # New API name for this function
)
# Launch the interface
print("Launching Gradio interface...")
# Consider adding share=False and potentially debug=True locally if needed
# demo.launch(share=True) # Use share=True if needed for external access like from your local script
demo.launch()
print("Interface launched. Check the output URL.")
# --- END OF FILE app.py --- |