mariusjabami commited on
Commit
a3382ae
·
verified ·
1 Parent(s): 1ae04e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -61
app.py CHANGED
@@ -1,64 +1,35 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
+
5
+ # Carrega tokenizer e modelo manualmente
6
+ tokenizer = AutoTokenizer.from_pretrained("lambdaindie/lambda-1v-1B")
7
+ model = AutoModelForCausalLM.from_pretrained("lambdaindie/lambda-1v-1B")
8
+
9
+ # Garante uso de CPU
10
+ device = torch.device("cpu")
11
+ model.to(device)
12
+
13
+ # Função de geração
14
+ def responder(prompt):
15
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
16
+ outputs = model.generate(
17
+ **inputs,
18
+ max_new_tokens=50,
19
+ do_sample=True,
20
+ top_p=0.95,
21
+ temperature=0.8,
22
+ pad_token_id=tokenizer.eos_token_id # evita warning se for causal
23
+ )
24
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
25
+
26
+ # Interface Gradio
27
+ iface = gr.Interface(
28
+ fn=responder,
29
+ inputs=gr.Textbox(lines=2, placeholder="Escreve algo..."),
30
+ outputs="text",
31
+ title="Lambda-1v-1B",
32
+ description="Modelo local de geração de texto criado por Marius Jabami.",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  )
34
 
35
+ iface.launch()