Update app.py
Browse files
app.py
CHANGED
@@ -1,88 +1,23 @@
|
|
1 |
-
import
|
2 |
-
import torch
|
3 |
import time
|
4 |
import threading
|
|
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
10 |
-
model = AutoModelForCausalLM.from_pretrained(
|
11 |
-
|
12 |
-
|
13 |
-
stop_signal = {"stop": False}
|
14 |
-
|
15 |
-
def generate_stream(prompt, max_tokens=512, temperature=0.7, top_p=0.95):
|
16 |
-
stop_signal["stop"] = False
|
17 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
|
18 |
-
|
19 |
-
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
20 |
-
|
21 |
-
generation_thread = threading.Thread(
|
22 |
-
target=model.generate,
|
23 |
-
kwargs=dict(
|
24 |
-
input_ids=inputs["input_ids"],
|
25 |
-
attention_mask=inputs["attention_mask"],
|
26 |
-
streamer=streamer,
|
27 |
-
max_new_tokens=max_tokens,
|
28 |
-
do_sample=True,
|
29 |
-
temperature=temperature,
|
30 |
-
top_p=top_p,
|
31 |
-
pad_token_id=tokenizer.eos_token_id,
|
32 |
-
)
|
33 |
-
)
|
34 |
-
generation_thread.start()
|
35 |
-
|
36 |
-
output = ""
|
37 |
-
for token in streamer:
|
38 |
-
if stop_signal["stop"]:
|
39 |
-
break
|
40 |
-
output += token
|
41 |
-
yield output.strip()
|
42 |
-
|
43 |
-
def stop_stream():
|
44 |
-
stop_signal["stop"] = True
|
45 |
-
|
46 |
-
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
47 |
-
messages = [{"role": "system", "content": system_message}] if system_message else []
|
48 |
-
|
49 |
-
for user, assistant in history[-3:]: # Limita a 3 interações passadas
|
50 |
-
if user:
|
51 |
-
messages.append({"role": "user", "content": user})
|
52 |
-
if assistant:
|
53 |
-
messages.append({"role": "assistant", "content": assistant})
|
54 |
-
|
55 |
-
thinking_prompt = messages + [{"role": "user", "content": f"{message}\n\nThink step-by-step before answering."}]
|
56 |
-
thinking_text = "\n".join([f"{m['role']}: {m['content']}" for m in thinking_prompt])
|
57 |
-
|
58 |
-
reasoning = ""
|
59 |
-
yield '<div class="markdown-think">Thinking...</div>'
|
60 |
-
|
61 |
-
start = time.time()
|
62 |
-
for token in generate_stream(thinking_text, max_tokens, temperature, top_p):
|
63 |
-
reasoning = token
|
64 |
-
yield f'<div class="markdown-think">{reasoning.strip()}</div>'
|
65 |
-
|
66 |
-
elapsed = time.time() - start
|
67 |
-
yield f"""
|
68 |
-
<div style="margin-top:12px;padding:8px 12px;background-color:#222;border-left:4px solid #888;
|
69 |
-
font-family:'JetBrains Mono', monospace;color:#ccc;font-size:14px;">
|
70 |
-
Pensou por {elapsed:.1f} segundos
|
71 |
-
</div>
|
72 |
-
"""
|
73 |
-
|
74 |
-
final_prompt = thinking_text + f"\n\nuser: {message}\nassistant: {reasoning.strip()}\nuser: Now answer based on your reasoning above.\nassistant:"
|
75 |
-
final_answer = ""
|
76 |
-
|
77 |
-
for token in generate_stream(final_prompt, max_tokens, temperature, top_p):
|
78 |
-
final_answer = token
|
79 |
-
yield final_answer.strip()
|
80 |
-
|
81 |
-
# === Interface ===
|
82 |
|
|
|
83 |
css = """
|
84 |
@import url('https://fonts.googleapis.com/css2?family=JetBrains+Mono&display=swap');
|
85 |
-
* {
|
|
|
|
|
86 |
html, body, .gradio-container {
|
87 |
background-color: #111 !important;
|
88 |
color: #e0e0e0 !important;
|
@@ -110,36 +45,98 @@ textarea, input, button, select {
|
|
110 |
|
111 |
theme = gr.themes.Base(
|
112 |
primary_hue="gray",
|
113 |
-
font=[
|
|
|
|
|
|
|
114 |
).set(
|
115 |
body_background_fill="#111",
|
116 |
body_text_color="#e0e0e0",
|
117 |
-
input_background_fill="#222",
|
118 |
-
input_border_color="#444",
|
119 |
button_primary_background_fill="#333",
|
120 |
button_primary_text_color="#e0e0e0",
|
|
|
|
|
|
|
121 |
)
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
|
138 |
|
139 |
-
|
140 |
-
with app:
|
141 |
-
chatbot.render()
|
142 |
-
stop_btn.render()
|
143 |
|
144 |
-
|
145 |
-
app.launch(share=True)
|
|
|
1 |
+
import os
|
|
|
2 |
import time
|
3 |
import threading
|
4 |
+
import gradio as gr
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
6 |
+
import torch
|
7 |
|
8 |
+
# Carregar modelo local
|
9 |
+
model_id = "lambdaindie/lambda-1v-1B" # Substitua se quiser
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
|
12 |
+
model.to("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Estilo
|
16 |
css = """
|
17 |
@import url('https://fonts.googleapis.com/css2?family=JetBrains+Mono&display=swap');
|
18 |
+
* {
|
19 |
+
font-family: 'JetBrains Mono', monospace !important;
|
20 |
+
}
|
21 |
html, body, .gradio-container {
|
22 |
background-color: #111 !important;
|
23 |
color: #e0e0e0 !important;
|
|
|
45 |
|
46 |
theme = gr.themes.Base(
|
47 |
primary_hue="gray",
|
48 |
+
font=[
|
49 |
+
gr.themes.GoogleFont("JetBrains Mono"),
|
50 |
+
"monospace"
|
51 |
+
]
|
52 |
).set(
|
53 |
body_background_fill="#111",
|
54 |
body_text_color="#e0e0e0",
|
|
|
|
|
55 |
button_primary_background_fill="#333",
|
56 |
button_primary_text_color="#e0e0e0",
|
57 |
+
input_background_fill="#222",
|
58 |
+
input_border_color="#444",
|
59 |
+
block_title_text_color="#fff"
|
60 |
)
|
61 |
|
62 |
+
# Flag para parar
|
63 |
+
stop_signal = False
|
64 |
+
|
65 |
+
def stop_stream():
|
66 |
+
global stop_signal
|
67 |
+
stop_signal = True
|
68 |
+
|
69 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
70 |
+
global stop_signal
|
71 |
+
stop_signal = False
|
72 |
+
|
73 |
+
# Construção do prompt
|
74 |
+
prompt = ""
|
75 |
+
if system_message:
|
76 |
+
prompt += f"{system_message}\n\n"
|
77 |
+
|
78 |
+
for msg in history:
|
79 |
+
role = msg["role"]
|
80 |
+
content = msg["content"]
|
81 |
+
if role == "user":
|
82 |
+
prompt += f"User: {content}\n"
|
83 |
+
elif role == "assistant":
|
84 |
+
prompt += f"Assistant: {content}\n"
|
85 |
+
|
86 |
+
prompt += f"User: {message}\nAssistant:"
|
87 |
+
|
88 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
89 |
+
|
90 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
91 |
+
generation_kwargs = dict(
|
92 |
+
**inputs,
|
93 |
+
streamer=streamer,
|
94 |
+
max_new_tokens=max_tokens,
|
95 |
+
temperature=temperature,
|
96 |
+
top_p=top_p,
|
97 |
+
do_sample=True,
|
98 |
+
)
|
99 |
+
|
100 |
+
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
101 |
+
thread.start()
|
102 |
+
|
103 |
+
output = ""
|
104 |
+
start = time.time()
|
105 |
+
|
106 |
+
for token in streamer:
|
107 |
+
if stop_signal:
|
108 |
+
break
|
109 |
+
output += token
|
110 |
+
yield {"role": "assistant", "content": output}
|
111 |
+
|
112 |
+
end = time.time()
|
113 |
+
yield {"role": "system", "content": f"Pensou por {end - start:.1f} segundos"}
|
114 |
+
|
115 |
+
# Interface
|
116 |
+
with gr.Blocks(css=css, theme=theme) as app:
|
117 |
+
chatbot = gr.Chatbot(label="λ", type="messages")
|
118 |
+
|
119 |
+
with gr.Row():
|
120 |
+
msg = gr.Textbox(label="Mensagem")
|
121 |
+
send_btn = gr.Button("Enviar")
|
122 |
+
stop_btn = gr.Button("Parar")
|
123 |
+
|
124 |
+
with gr.Accordion("Configurações Avançadas", open=False):
|
125 |
+
system_message = gr.Textbox(label="System Message", value="")
|
126 |
+
max_tokens = gr.Slider(64, 2048, value=256, step=1, label="Max Tokens")
|
127 |
+
temperature = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
|
128 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
129 |
+
|
130 |
+
state = gr.State([])
|
131 |
+
|
132 |
+
def user_message_submit(user_msg, chat_history):
|
133 |
+
if user_msg:
|
134 |
+
chat_history = chat_history + [{"role": "user", "content": user_msg}]
|
135 |
+
return "", chat_history
|
136 |
|
137 |
+
send_btn.click(fn=user_message_submit, inputs=[msg, state], outputs=[msg, state])\
|
138 |
+
.then(fn=respond, inputs=[msg, state, system_message, max_tokens, temperature, top_p], outputs=chatbot)
|
139 |
|
140 |
+
stop_btn.click(fn=stop_stream, inputs=[], outputs=[])
|
|
|
|
|
|
|
141 |
|
142 |
+
app.launch(share=True)
|
|