|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer |
|
import torch |
|
import threading |
|
import time |
|
|
|
model_id = "lambdaindie/lambdai" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
|
|
css = """ |
|
@import url('https://fonts.googleapis.com/css2?family=JetBrains+Mono&display=swap'); |
|
* { font-family: 'JetBrains Mono', monospace !important; } |
|
body { background-color: #111; color: #e0e0e0; } |
|
.markdown-think { |
|
background-color: #1e1e1e; |
|
border-left: 4px solid #555; |
|
padding: 10px; |
|
margin-bottom: 8px; |
|
font-style: italic; |
|
white-space: pre-wrap; |
|
animation: pulse 1.5s infinite ease-in-out; |
|
} |
|
@keyframes pulse { |
|
0% { opacity: 0.6; } |
|
50% { opacity: 1.0; } |
|
100% { opacity: 0.6; } |
|
} |
|
""" |
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
messages = [{"role": "system", "content": system_message}] if system_message else [] |
|
|
|
for user, assistant in history: |
|
if user: |
|
messages.append({"role": "user", "content": user}) |
|
if assistant: |
|
messages.append({"role": "assistant", "content": assistant}) |
|
|
|
thinking_prompt = messages + [{"role": "user", "content": f"{message}\n\nThink step-by-step."}] |
|
prompt = tokenizer.apply_chat_template(thinking_prompt, tokenize=False, add_generation_prompt=True) |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(device) |
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
reasoning = "" |
|
yield '<div class="markdown-think">Thinking...</div>' |
|
start = time.time() |
|
|
|
thread = threading.Thread(target=model.generate, kwargs={ |
|
"inputs": inputs["input_ids"], |
|
"max_new_tokens": max_tokens, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"streamer": streamer, |
|
}) |
|
thread.start() |
|
|
|
for token in streamer: |
|
reasoning += token |
|
yield f'<div class="markdown-think">{reasoning.strip()}</div>' |
|
|
|
elapsed = time.time() - start |
|
yield f"""<div style="margin-top:12px;padding:8px 12px;background-color:#222;border-left:4px solid #888; |
|
font-family:'JetBrains Mono', monospace;color:#ccc;font-size:14px;"> |
|
Pensou por {elapsed:.1f} segundos</div>""" |
|
|
|
|
|
final_prompt = messages + [ |
|
{"role": "user", "content": message}, |
|
{"role": "assistant", "content": reasoning.strip()}, |
|
{"role": "user", "content": "Agora responda baseado nisso."} |
|
] |
|
prompt2 = tokenizer.apply_chat_template(final_prompt, tokenize=False, add_generation_prompt=True) |
|
inputs2 = tokenizer(prompt2, return_tensors="pt").to(device) |
|
streamer2 = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
thread2 = threading.Thread(target=model.generate, kwargs={ |
|
"inputs": inputs2["input_ids"], |
|
"max_new_tokens": max_tokens, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"streamer": streamer2, |
|
}) |
|
thread2.start() |
|
|
|
final_answer = "" |
|
for token in streamer2: |
|
final_answer += token |
|
yield final_answer.strip() |
|
|
|
demo = gr.ChatInterface( |
|
fn=respond, |
|
title="λambdAI", |
|
theme=gr.themes.Base(), |
|
css=css, |
|
additional_inputs=[ |
|
gr.Textbox(value="", label="System Message"), |
|
gr.Slider(64, 2048, value=512, step=1, label="Max Tokens"), |
|
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p") |
|
] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |