lambdai / app.py
mariusjabami's picture
Update app.py
582395b verified
raw
history blame
3.58 kB
import gradio as gr
from huggingface_hub import InferenceClient
import time
client = InferenceClient("lambdaindie/lambdai")
css = """
body {
background-color: #000000;
color: #e0e0e0;
font-family: 'JetBrains Mono', monospace;
}
.gr-button {
background: linear-gradient(to right, #2a2a2a, #1f1f1f);
color: white;
border-radius: 10px;
padding: 8px 16px;
font-weight: bold;
font-family: 'JetBrains Mono', monospace;
}
.gr-button:hover {
background: #333;
}
.gr-textbox textarea {
background-color: #181818 !important;
color: #fff !important;
font-family: 'JetBrains Mono', monospace;
border-radius: 8px;
}
.gr-chat-message {
font-family: 'JetBrains Mono', monospace;
}
.markdown-think {
background-color: #000000;
border-left: 4px solid #555;
padding: 10px;
margin-bottom: 8px;
font-style: italic;
white-space: pre-wrap;
font-family: 'JetBrains Mono', monospace;
display: flex;
align-items: center;
gap: 10px;
animation: pulse 1.5s infinite ease-in-out;
}
.loader {
width: 14px;
height: 14px;
border: 2px solid #888;
border-top: 2px solid #e0e0e0;
border-radius: 50%;
animation: spin 1s linear infinite;
}
@keyframes spin {
to { transform: rotate(360deg); }
}
@keyframes pulse {
0% { opacity: 0.6; }
50% { opacity: 1.0; }
100% { opacity: 0.6; }
}
"""
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}] if system_message else []
for user, assistant in history:
if user:
messages.append({"role": "user", "content": user})
if assistant:
messages.append({"role": "assistant", "content": assistant})
thinking_prompt = messages + [
{
"role": "user",
"content": f"{message}\n\nThink step-by-step before answering."
}
]
reasoning = ""
yield '<div class="markdown-think"><div class="loader"></div>Thinking...</div>'
for chunk in client.chat_completion(
thinking_prompt,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = chunk.choices[0].delta.content or ""
reasoning += token
styled_thought = f'<div class="markdown-think"><div class="loader"></div>{reasoning.strip()}</div>'
yield styled_thought
time.sleep(0.5)
final_prompt = messages + [
{"role": "user", "content": message},
{"role": "assistant", "content": reasoning.strip()},
{"role": "user", "content": "Now answer based on your reasoning above."}
]
final_answer = ""
for chunk in client.chat_completion(
final_prompt,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = chunk.choices[0].delta.content or ""
final_answer += token
yield final_answer.strip()
demo = gr.ChatInterface(
fn=respond,
title="λambdAI",
theme=gr.themes.Base(primary_hue="gray"),
css=css,
additional_inputs=[
gr.Textbox(
value="You are a concise, logical AI that explains its reasoning clearly before answering.",
label="System Message"
),
gr.Slider(64, 2048, value=512, step=1, label="Max Tokens"),
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
]
)
if __name__ == "__main__":
demo.launch()