|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import time |
|
|
|
|
|
chat_client = InferenceClient("lambdaindie/lambdai") |
|
image_client = InferenceClient("stabilityai/stable-diffusion-2") |
|
|
|
|
|
gr.themes.Base().set(font=["JetBrains Mono", "monospace"]) |
|
|
|
css = """ |
|
body { |
|
font-family: 'JetBrains Mono', monospace; |
|
background-color: #111; |
|
color: #e0e0e0; |
|
} |
|
.gr-textbox textarea { |
|
background-color: #181818 !important; |
|
color: #fff !important; |
|
font-family: 'JetBrains Mono', monospace; |
|
border-radius: 8px; |
|
} |
|
.markdown-think { |
|
background-color: #1e1e1e; |
|
border-left: 4px solid #555; |
|
padding: 10px; |
|
margin-bottom: 8px; |
|
font-style: italic; |
|
animation: pulse 1.5s infinite ease-in-out; |
|
} |
|
@keyframes pulse { |
|
0% { opacity: 0.6; } |
|
50% { opacity: 1.0; } |
|
100% { opacity: 0.6; } |
|
} |
|
""" |
|
|
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
messages = [{"role": "system", "content": system_message}] if system_message else [] |
|
|
|
for user, assistant in history: |
|
if user: |
|
messages.append({"role": "user", "content": user}) |
|
if assistant: |
|
messages.append({"role": "assistant", "content": assistant}) |
|
|
|
thinking_prompt = messages + [ |
|
{"role": "user", "content": f"{message}\n\nThink step-by-step before answering."} |
|
] |
|
|
|
reasoning = "" |
|
yield '<div class="markdown-think">Thinking...</div>' |
|
|
|
for chunk in chat_client.chat_completion( |
|
thinking_prompt, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = chunk.choices[0].delta.content or "" |
|
reasoning += token |
|
yield f'<div class="markdown-think">{reasoning.strip()}</div>' |
|
|
|
time.sleep(0.5) |
|
|
|
final_prompt = messages + [ |
|
{"role": "user", "content": message}, |
|
{"role": "assistant", "content": reasoning.strip()}, |
|
{"role": "user", "content": "Now answer based on your reasoning above."} |
|
] |
|
|
|
final_answer = "" |
|
for chunk in chat_client.chat_completion( |
|
final_prompt, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = chunk.choices[0].delta.content or "" |
|
final_answer += token |
|
yield final_answer.strip() |
|
|
|
|
|
def generate_image(prompt): |
|
return image_client.text_to_image(prompt, guidance_scale=7.5) |
|
|
|
|
|
with gr.Blocks(css=css, theme=gr.themes.Base()) as demo: |
|
gr.Markdown("# λmabdAI") |
|
|
|
with gr.Tabs(): |
|
with gr.Tab("Chat"): |
|
gr.ChatInterface( |
|
fn=respond, |
|
additional_inputs=[ |
|
gr.Textbox( |
|
value="You are a concise, logical AI that explains its reasoning clearly before answering.", |
|
label="System Message" |
|
), |
|
gr.Slider(64, 2048, value=512, step=1, label="Max Tokens"), |
|
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p") |
|
] |
|
) |
|
|
|
with gr.Tab("Image Generator"): |
|
gr.Markdown("### Generate an image from a prompt") |
|
prompt = gr.Textbox(label="Prompt") |
|
output = gr.Image(type="pil") |
|
btn = gr.Button("Generate") |
|
btn.click(fn=generate_image, inputs=prompt, outputs=output) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |