import gradio as gr from huggingface_hub import InferenceClient # Inicia o cliente para o modelo client = InferenceClient("lambdaindie/lambdai") # CSS simples css = r""" * { font-family: 'JetBrains Mono', monospace; } .gradio-container { background-color: #111; color: #e0e0e0; } textarea, input, .block, .wrap, .chatbot { background-color: #1a1a1a !important; color: #e0e0e0 !important; border: 1px solid #333 !important; border-radius: 10px; } button.pulse { background-color: #272727 !important; border: 1px solid #444 !important; color: #e0e0e0 !important; border-radius: 10px; animation: pulse 2s infinite; } @keyframes pulse { 0% { transform: scale(1); box-shadow: 0 0 0 0 rgba(255,255,255,0.5); } 70% { transform: scale(1.05); box-shadow: 0 0 0 10px rgba(255,255,255,0); } 100% { transform: scale(1); box-shadow: 0 0 0 0 rgba(255,255,255,0); } } .loader { border: 3px solid #2b2b2b; border-top: 3px solid #e0e0e0; border-radius: 50%; width: 18px; height: 18px; animation: spin 1s linear infinite; } @keyframes spin { 0% { transform: rotate(0deg); } 100% { transform: rotate(360deg); } } .thinking-html { background-color: #2b2b2b; padding: 8px; border-radius: 8px; margin-bottom: 8px; font-style: italic; color: #aaaaaa; display: flex; align-items: center; } """ # Função principal para responder def respond(message, chat_history): thinking_html = ( f"
" f"
" f"Thinking… generating response..." f"
" ) yield chat_history + [{"role": "user", "content": message}, {"role": "assistant", "content": thinking_html}] response = client.chat_completion([{"role": "user", "content": message}], stream=False) answer = response['choices'][0]['message']['content'] yield chat_history + [{"role": "user", "content": message}, {"role": "assistant", "content": answer}] # Interface Gradio with gr.Blocks(css=css) as demo: gr.Markdown("

Lambdai-v1-1B

") chatbot = gr.Chatbot(elem_id="chatbot", height=480, render_markdown=True) with gr.Row(): user_input = gr.Textbox(show_label=False, placeholder="Type your message here...", lines=2) send_button = gr.Button("Send", elem_classes="pulse") # Aciona a função ao clicar no botão send_button.click( fn=respond, inputs=[user_input, chatbot], outputs=chatbot ) demo.launch()