Spaces:
Running
Running
File size: 6,737 Bytes
63ea7d2 05c6778 1c74fb1 46a04b7 1c74fb1 63ea7d2 1784508 63ea7d2 46a04b7 63ea7d2 05c6778 46a04b7 05c6778 46a04b7 05c6778 46a04b7 63ea7d2 e05c3b0 05c6778 63ea7d2 46a04b7 63ea7d2 05c6778 63ea7d2 e05c3b0 05c6778 63ea7d2 46a04b7 63ea7d2 05c6778 63ea7d2 84a2044 05c6778 63ea7d2 05c6778 63ea7d2 05c6778 1c74fb1 05c6778 63ea7d2 05c6778 1c74fb1 63ea7d2 1784508 e05c3b0 1784508 05c6778 63ea7d2 46a04b7 05c6778 1784508 46a04b7 63ea7d2 e05c3b0 05c6778 63ea7d2 46a04b7 63ea7d2 05c6778 46a04b7 05c6778 46a04b7 05c6778 46a04b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
"""Wrappers for BioNeMo NIMs."""
from lynxkite_graph_analytics import Bundle
from lynxkite.core import ops
import httpx
import io
import pandas as pd
import rdkit
import os
from . import k8s
ENV = "LynxKite Graph Analytics"
op = ops.op_registration(ENV)
key = os.getenv("NVCF_RUN_KEY")
async def query_bionemo_nim(
url: str,
payload: dict,
):
headers = {
"Authorization": f"Bearer {key}",
"NVCF-POLL-SECONDS": "500",
"Content-Type": "application/json",
}
try:
print(f"Sending request to {url}")
async with httpx.AsyncClient(timeout=600) as client:
response = await client.post(url, json=payload, headers=headers)
print(f"Received response from {url}", response.status_code)
response.raise_for_status()
return response.json()
except httpx.RequestError as e:
raise ValueError(f"Query failed: {e}")
@op("MSA-search", slow=True)
async def msa_search(
bundle: Bundle,
*,
protein_table: str,
protein_column: str,
e_value: float = 0.0001,
iterations: int = 1,
search_type: str = "alphafold2",
output_alignment_formats: str = "a3m",
databases: str = "Uniref30_2302,colabfold_envdb_202108",
):
bundle = bundle.copy()
bundle.dfs[protein_table]["alignments"] = None
formats = [format.strip() for format in output_alignment_formats.split(",")]
dbs = [db.strip() for db in databases.split(",")]
for idx, protein_sequence in enumerate(bundle.dfs[protein_table][protein_column]):
print(f"Processing protein {idx + 1}/{len(bundle.dfs[protein_table])}")
response = await query_bionemo_nim(
url="https://health.api.nvidia.com/v1/biology/colabfold/msa-search/predict",
payload={
"sequence": protein_sequence,
"e_value": e_value,
"iterations": iterations,
"search_type": search_type,
"output_alignment_formats": formats,
"databases": dbs,
},
)
bundle.dfs[protein_table].at[idx, "alignments"] = response["alignments"]
return bundle
@op("Query OpenFold2", slow=True)
async def query_openfold2(
bundle: Bundle,
*,
protein_table: str,
protein_column: str,
alignment_table: str,
alignment_column: str,
selected_models: str = "1,2",
relax_prediction: bool = False,
):
bundle = bundle.copy()
bundle.dfs[protein_table]["folded_protein"] = None
selected_models_list = [int(model) for model in selected_models.split(",")]
for idx in range(len(bundle.dfs[protein_table])):
print(f"Processing protein {idx + 1}/{len(bundle.dfs[protein_table])}")
protein = bundle.dfs[protein_table][protein_column].iloc[idx]
alignments = bundle.dfs[alignment_table][alignment_column].iloc[idx]
response = await query_bionemo_nim(
url="https://health.api.nvidia.com/v1/biology/openfold/openfold2/predict-structure-from-msa-and-template",
payload={
"sequence": protein,
"alignments": alignments,
"selected_models": selected_models_list,
"relax_prediction": relax_prediction,
},
)
folded_protein = response["structures_in_ranked_order"].pop(0)["structure"]
bundle.dfs[protein_table].at[idx, "folded_protein"] = folded_protein
bundle.dfs["openfold"] = pd.DataFrame()
return bundle
@op("View molecule", view="molecule")
def view_molecule(
bundle: Bundle,
*,
molecule_table: str,
molecule_column: str,
row_index: int = 0,
):
molecule_data = bundle.dfs[molecule_table][molecule_column].iloc[row_index]
if isinstance(molecule_data, rdkit.Chem.Mol):
sio = io.StringIO()
with rdkit.Chem.SDWriter(sio) as w:
w.write(molecule_data)
molecule_data = sio.getvalue()
return {
"data": molecule_data,
"format": "pdb" if molecule_data.startswith("ATOM") else "sdf",
}
def _needs_bionemo_k8s(**k8s_kwargs):
if USE_K8S:
return k8s.needs(**k8s_kwargs)
else:
return lambda func: func
def base_url(service):
if USE_K8S:
return f"http://{k8s.get_ip(service)}/"
else:
return "https://health.api.nvidia.com/"
USE_K8S = False # Not production ready yet.
needs_genmol_k8s = _needs_bionemo_k8s(
name="genmol",
image="nvcr.io/nim/nvidia/genmol:1.0.0",
port=8000,
)
@op("Query GenMol", slow=True)
@needs_genmol_k8s
async def query_genmol(
bundle: Bundle,
*,
molecule_table: str,
molecule_column: str,
num_molecules: int = 5,
temperature: float = 1.0,
noise: float = 0.2,
step_size: int = 4,
scoring: str = "QED",
):
bundle = bundle.copy()
response = await query_bionemo_nim(
url=f"{base_url('genmol')}v1/biology/nvidia/genmol/generate",
payload={
"smiles": bundle.dfs[molecule_table][molecule_column].iloc[0],
"num_molecules": num_molecules,
"temperature": temperature,
"noise": noise,
"step_size": step_size,
"scoring": scoring,
},
)
generated_ligands = "\n".join([v["smiles"] for v in response["molecules"]])
bundle.dfs[molecule_table]["ligands"] = generated_ligands
return bundle
@op("Query DiffDock", slow=True)
async def query_diffdock(
proteins: Bundle,
ligands: Bundle,
*,
protein_table: str,
protein_column: str,
ligand_table: str,
ligand_column: str,
ligand_file_type: str = "txt",
num_poses=10,
time_divisions=20,
num_steps=18,
):
response = await query_bionemo_nim(
url="https://health.api.nvidia.com/v1/biology/mit/diffdock",
payload={
"protein": proteins.dfs[protein_table][protein_column].iloc[0],
"ligand": ligands.dfs[ligand_table][ligand_column].iloc[0],
"ligand_file_type": ligand_file_type,
"num_poses": num_poses,
"time_divisions": time_divisions,
"num_steps": num_steps,
},
)
bundle = Bundle()
bundle.dfs["diffdock_table"] = pd.DataFrame()
bundle.dfs["diffdock_table"]["protein"] = [response["protein"]] * len(response["status"])
bundle.dfs["diffdock_table"]["ligand"] = [response["ligand"]] * len(response["status"])
bundle.dfs["diffdock_table"]["trajectory"] = response["trajectory"]
bundle.dfs["diffdock_table"]["ligand_positions"] = response["ligand_positions"]
bundle.dfs["diffdock_table"]["position_confidence"] = response["position_confidence"]
bundle.dfs["diffdock_table"]["status"] = response["status"]
return bundle
|