Spaces:
Running
Running
File size: 34,573 Bytes
9cc1fee 8883a14 9cc1fee d8f90d7 9ac804b 8883a14 9ac804b 98383bd 9ac804b 99ddf91 9cc1fee 03b7855 9ac804b 98383bd 9ac804b 9cc1fee 03b7855 d8f90d7 204116f 76e89e6 98383bd 9cc1fee 83b1026 0213da5 83b1026 9cc1fee 0b73c8b d8f90d7 9cc1fee da1ea6b 9cc1fee d8f90d7 8883a14 1321603 8883a14 1321603 6ba5741 1321603 76e89e6 98383bd b9f38c7 98383bd 8883a14 0b73c8b 9ac804b 8883a14 35248ff 0b73c8b 9ac804b 35248ff 9ac804b 35248ff 0b73c8b 8883a14 35248ff f064e87 0b73c8b 35248ff 9ac804b 6ba5741 e05c3b0 6ba5741 9ac804b 6ba5741 9ac804b e05c3b0 8883a14 9ac804b 8883a14 9ac804b 5b603ce 9ac804b 8883a14 9ac804b 8883a14 0754675 5b603ce 0754675 8883a14 9ac804b 8883a14 9ac804b 8883a14 9ac804b 8883a14 9ac804b f064e87 9ac804b f064e87 9ac804b f064e87 9ac804b 8883a14 f064e87 8883a14 e05c3b0 8883a14 f064e87 8883a14 f064e87 8883a14 9ac804b 8883a14 9ac804b 8883a14 9ac804b 8883a14 9ac804b 8883a14 9ac804b 8883a14 9ac804b 0754675 6ba5741 0754675 8883a14 0754675 8883a14 0754675 e731b16 a8b8b90 6ba5741 a8b8b90 0754675 a8b8b90 0754675 f064e87 9ac804b e731b16 9ac804b 8883a14 a8b8b90 8883a14 a8b8b90 e05c3b0 6ba5741 d8f90d7 6ba5741 9cc1fee 6ba5741 d8f90d7 6ba5741 f064e87 6ba5741 f064e87 6ba5741 9cc1fee 6ba5741 d8f90d7 6ba5741 9cc1fee 6ba5741 d8f90d7 9cc1fee e05c3b0 98383bd b9f38c7 98383bd 0213da5 0b73c8b 98383bd 0b73c8b 6ba5741 0b73c8b 6ba5741 0b73c8b d8f90d7 0b73c8b 6ba5741 0b73c8b 98383bd 0b73c8b 98383bd d8f90d7 0b73c8b 9cc1fee 0b73c8b 0213da5 0b73c8b d8f90d7 9cc1fee 0b73c8b d8f90d7 0b73c8b d8f90d7 0b73c8b d8f90d7 0b73c8b 0213da5 da1ea6b 9cc1fee d8f90d7 9cc1fee 76e89e6 6fa5290 76e89e6 e731b16 76e89e6 e731b16 e05c3b0 76e89e6 e731b16 76e89e6 e731b16 76e89e6 e731b16 76e89e6 0213da5 9cc1fee 03b7855 d8f90d7 9cc1fee 0213da5 9cc1fee d8f90d7 9cc1fee da1ea6b e05c3b0 d8f90d7 204116f d8f90d7 911c23f 98383bd d8f90d7 911c23f d8f90d7 911c23f d8f90d7 9cc1fee d8f90d7 9cc1fee 225657d 76e89e6 225657d e731b16 225657d 76e89e6 225657d 76e89e6 da1ea6b 9cc1fee d8f90d7 b34d742 e4ff751 a083285 03b7855 e4ff751 cf9a22d 3dc5b64 03b7855 39c4ace cf9a22d b9f38c7 03b7855 911c23f cf9a22d 911c23f 03b7855 cf9a22d 03b7855 d8f90d7 03b7855 d8f90d7 03b7855 d8f90d7 03b7855 cf9a22d 03b7855 cf9a22d 03b7855 cf9a22d 03b7855 cf9a22d a083285 d8f90d7 03b7855 e4ff751 03b7855 39c4ace 03b7855 cf9a22d 03b7855 9ac804b 6ba5741 9ac804b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 |
"""
LynxScribe configuration and testing in LynxKite.
TODO: all these outputs should contain metadata. So the next task can check the input type, etc.
"""
from google.cloud import storage
from copy import deepcopy
from enum import Enum
import asyncio
import pandas as pd
from pydantic import BaseModel, ConfigDict
import pathlib
from lynxscribe.core.llm.base import get_llm_engine
from lynxscribe.core.vector_store.base import get_vector_store
from lynxscribe.common.config import load_config
from lynxscribe.components.text.embedder import TextEmbedder
from lynxscribe.core.models.embedding import Embedding
from lynxscribe.components.embedding_clustering import FclusterBasedClustering
from lynxscribe.components.rag.rag_graph import RAGGraph
from lynxscribe.components.rag.knowledge_base_graph import PandasKnowledgeBaseGraph
from lynxscribe.components.rag.rag_chatbot import Scenario, ScenarioSelector, RAGChatbot
from lynxscribe.components.chat.processors import (
ChatProcessor,
MaskTemplate,
TruncateHistory,
)
from lynxscribe.components.chat.api import ChatAPI
from lynxscribe.core.models.prompts import ChatCompletionPrompt, Message
from lynxscribe.components.rag.loaders import FAQTemplateLoader
from lynxkite.core import ops
import json
from lynxkite.core.executors import one_by_one
DEFAULT_NEGATIVE_ANSWER = "I'm sorry, but the data I've been trained on does not contain any information related to your question."
ENV = "LynxScribe"
one_by_one.register(ENV)
op = ops.op_registration(ENV)
output_on_top = ops.output_position(output="top")
# defining the cloud provider enum
class CloudProvider(str, Enum):
GCP = "gcp"
AWS = "aws"
AZURE = "azure"
class RAGVersion(str, Enum):
V1 = "v1"
V2 = "v2"
class MessageRole(str, Enum):
SYSTEM = "system"
USER = "user"
class RAGTemplate(BaseModel):
"""
Model for RAG templates consisting of three tables: they are connected via scenario names.
One table (FAQs) contains scenario-denoted nodes to upsert into the knowledge base, the other
two tables serve as the configuration for the scenario selector.
Attributes:
faq_data:
Table where each row is an FAQ question, and possibly its answer pair. Will be fed into
`FAQTemplateLoader.load_nodes_and_edges()`. For configuration of this table see the
loader's init arguments.
scenario_data:
Table where each row is a Scenario, column names are thus scenario attributes. Will be
fed into `ScenarioSelector.from_data()`.
prompt_codes:
Optional helper for the scenario table, may contain prompt code mappings to real prompt
messages. It's enough then to use the codes instead of the full messages in the
scenarios table. Will be fed into `ScenarioSelector.from_data()`.
"""
model_config = ConfigDict(arbitrary_types_allowed=True)
faq_data: pd.DataFrame
scenario_data: pd.DataFrame
prompt_codes: dict[str, str] = {}
@classmethod
def from_excel_path(
cls,
path: str,
faq_data_sheet_name: str,
scenario_data_sheet_name: str,
prompt_codes_sheet_name: str | None = None,
) -> "RAGTemplate":
"""Spawn a RAGTemplate from an Excel file containing the two needed (plus one optional) sheets."""
def transform_codes(prompt_codes: pd.DataFrame) -> dict[str, str]:
"""Check and transform prompt codes table into a code dictionary."""
if (len_columns := len(prompt_codes.columns)) != 2:
raise ValueError(
f"Prompt codes should contain exactly 2 columns, {len_columns} found."
)
return prompt_codes.set_index(prompt_codes.columns[0])[
prompt_codes.columns[1]
].to_dict()
return cls(
faq_data=pd.read_excel(path, sheet_name=faq_data_sheet_name),
scenario_data=pd.read_excel(path, sheet_name=scenario_data_sheet_name),
prompt_codes=transform_codes(pd.read_excel(path, sheet_name=prompt_codes_sheet_name))
if prompt_codes_sheet_name
else {},
)
@op("Cloud-sourced File Listing")
def cloud_file_loader(
*,
cloud_provider: CloudProvider = CloudProvider.GCP,
folder_URL: str = "https://storage.googleapis.com/lynxkite_public_data/lynxscribe-images/image-rag-test",
accepted_file_types: str = ".jpg, .jpeg, .png",
):
"""
Gives back the list of URLs of all the images from a cloud-based folder.
Currently only supports GCP storage.
"""
if folder_URL[-1].endswith("/"):
folder_URL = folder_URL[:-1]
accepted_file_types = tuple([t.strip() for t in accepted_file_types.split(",")])
if cloud_provider == CloudProvider.GCP:
client = storage.Client()
url_useful_part = folder_URL.split(".com/")[-1]
bucket_name = url_useful_part.split("/")[0]
if bucket_name == url_useful_part:
prefix = ""
else:
prefix = url_useful_part.split(bucket_name + "/")[-1]
bucket = client.bucket(bucket_name)
blobs = bucket.list_blobs(prefix=prefix)
file_urls = [blob.public_url for blob in blobs if blob.name.endswith(accepted_file_types)]
return {"file_urls": file_urls}
else:
raise ValueError(f"Cloud provider '{cloud_provider}' is not supported.")
# @output_on_top
# @op("LynxScribe RAG Graph Vector Store", slow=True)
# def ls_rag_graph(
# *,
# name: str = "faiss",
# num_dimensions: int = 3072,
# collection_name: str = "lynx",
# text_embedder_interface: str = "openai",
# text_embedder_model_name_or_path: str = "text-embedding-3-large",
# # api_key_name: str = "OPENAI_API_KEY",
# ):
# """
# Returns with a vector store instance.
# """
# # getting the text embedder instance
# llm_params = {"name": text_embedder_interface}
# # if api_key_name:
# # llm_params["api_key"] = os.getenv(api_key_name)
# llm = get_llm_engine(**llm_params)
# text_embedder = TextEmbedder(llm=llm, model=text_embedder_model_name_or_path)
# # getting the vector store
# if name == "chromadb":
# vector_store = get_vector_store(name=name, collection_name=collection_name)
# elif name == "faiss":
# vector_store = get_vector_store(name=name, num_dimensions=num_dimensions)
# else:
# raise ValueError(f"Vector store name '{name}' is not supported.")
# # building up the RAG graph
# rag_graph = RAGGraph(
# PandasKnowledgeBaseGraph(vector_store=vector_store, text_embedder=text_embedder)
# )
# return {"rag_graph": rag_graph}
@op("LynxScribe Image Describer", slow=True)
async def ls_image_describer(
file_urls,
*,
llm_interface: str = "openai",
llm_visual_model: str = "gpt-4o",
llm_prompt_path: str = "uploads/image_description_prompts.yaml",
llm_prompt_name: str = "cot_picture_descriptor",
# api_key_name: str = "OPENAI_API_KEY",
):
"""
Returns with image descriptions from a list of image URLs.
TODO: making the inputs more flexible (e.g. accepting file locations, URLs, binaries, etc.).
the input dictionary should contain some meta info: e.g., what is in the list...
"""
# handling inputs
image_urls = file_urls["file_urls"]
# loading the LLM
llm_params = {"name": llm_interface}
# if api_key_name:
# llm_params["api_key"] = os.getenv(api_key_name)
llm = get_llm_engine(**llm_params)
# preparing the prompts
prompt_base = load_config(llm_prompt_path)[llm_prompt_name]
prompt_list = []
for i in range(len(image_urls)):
image = image_urls[i]
_prompt = deepcopy(prompt_base)
for message in _prompt:
if isinstance(message["content"], list):
for _message_part in message["content"]:
if "image_url" in _message_part:
_message_part["image_url"] = {"url": image}
prompt_list.append(_prompt)
# creating the prompt objects
ch_prompt_list = [
ChatCompletionPrompt(model=llm_visual_model, messages=prompt) for prompt in prompt_list
]
# get the image descriptions
tasks = [llm.acreate_completion(completion_prompt=_prompt) for _prompt in ch_prompt_list]
out_completions = await asyncio.gather(*tasks)
results = [
dictionary_corrector(result.choices[0].message.content) for result in out_completions
]
# getting the image descriptions (list of dictionaries {image_url: URL, description: description})
# TODO: some result class could be a better idea (will be developed in LynxScribe)
image_descriptions = [
{"image_url": image_urls[i], "description": results[i]} for i in range(len(image_urls))
]
return {"image_descriptions": image_descriptions}
@op("LynxScribe Image RAG Builder", slow=True)
async def ls_image_rag_builder(
image_descriptions,
*,
vdb_provider_name: str = "faiss",
vdb_num_dimensions: int = 3072,
vdb_collection_name: str = "lynx",
text_embedder_interface: str = "openai",
text_embedder_model_name_or_path: str = "text-embedding-3-large",
# api_key_name: str = "OPENAI_API_KEY",
):
"""
Based on image descriptions, and embedding/VDB parameters,
the function builds up an image RAG graph, where the nodes are the
descriptions of the images (and of all image objects).
In a later phase, synthetic questions and "named entities" will also
be added to the graph.
"""
# handling inputs
image_descriptions = image_descriptions["image_descriptions"]
# Building up the empty RAG graph
# a) Define LLM interface and get a text embedder
llm_params = {"name": text_embedder_interface}
# if api_key_name:
# llm_params["api_key"] = os.getenv(api_key_name)
llm = get_llm_engine(**llm_params)
text_embedder = TextEmbedder(llm=llm, model=text_embedder_model_name_or_path)
# b) getting the vector store
# TODO: vdb_provider_name should be ENUM, and other parameters should appear accordingly
if vdb_provider_name == "chromadb":
vector_store = get_vector_store(name=vdb_provider_name, collection_name=vdb_collection_name)
elif vdb_provider_name == "faiss":
vector_store = get_vector_store(name=vdb_provider_name, num_dimensions=vdb_num_dimensions)
else:
raise ValueError(f"Vector store name '{vdb_provider_name}' is not supported.")
# c) building up the RAG graph
rag_graph = RAGGraph(
PandasKnowledgeBaseGraph(vector_store=vector_store, text_embedder=text_embedder)
)
dict_list_df = []
for image_description_tuple in image_descriptions:
image_url = image_description_tuple["image_url"]
image_description = image_description_tuple["description"]
if "overall description" in image_description:
dict_list_df.append(
{
"image_url": image_url,
"description": image_description["overall description"],
"source": "overall description",
}
)
if "details" in image_description:
for dkey in image_description["details"].keys():
text = f"The picture's description is: {image_description['overall description']}\n\nThe description of the {dkey} is: {image_description['details'][dkey]}"
dict_list_df.append(
{"image_url": image_url, "description": text, "source": "details"}
)
pdf_descriptions = pd.DataFrame(dict_list_df)
pdf_descriptions["embedding_values"] = await text_embedder.acreate_embedding(
pdf_descriptions["description"].to_list()
)
pdf_descriptions["id"] = "im_" + pdf_descriptions.index.astype(str)
# adding the embeddings to the RAG graph with metadata
pdf_descriptions["embedding"] = pdf_descriptions.apply(
lambda row: Embedding(
id=row["id"],
value=row["embedding_values"],
metadata={
"image_url": row["image_url"],
"image_part": row["source"],
"type": "image_description",
},
document=row["description"],
),
axis=1,
)
embedding_list = pdf_descriptions["embedding"].tolist()
# adding the embeddings to the RAG graph
rag_graph.kg_base.vector_store.upsert(embedding_list)
# # saving the RAG graph
# rag_graph.kg_base.save(image_rag_out_path)
return {"rag_graph": rag_graph}
@op("LynxScribe RAG Graph Saver")
def ls_save_rag_graph(
rag_graph,
*,
image_rag_out_path: str = "image_test_rag_graph.pickle",
):
"""
Saves the RAG graph to a pickle file.
"""
# reading inputs
rag_graph = rag_graph[0]["rag_graph"]
rag_graph.kg_base.save(image_rag_out_path)
return None
@ops.input_position(rag_graph="bottom")
@op("LynxScribe Image RAG Query")
async def search_context(rag_graph, text, *, top_k=3):
"""
top_k: which results we are showing (TODO: when the image viewer is
updated w pager, change back to top k)
"""
message = text["text"]
rag_graph = rag_graph[0]["rag_graph"]
# get all similarities
emb_similarities = await rag_graph.search_context(
message, max_results=top_k, unique_metadata_key="image_url"
)
# get the image urls, scores and descriptions
result_list = []
for emb_sim in emb_similarities:
image_url = emb_sim.embedding.metadata["image_url"]
score = emb_sim.score
description = emb_sim.embedding.document
result_list.append({"image_url": image_url, "score": score, "description": description})
real_k = min(top_k, len(result_list) - 1)
return {"embedding_similarities": [result_list[real_k]]}
@op("LynxScribe Image Result Viewer", view="image")
def view_image(embedding_similarities):
"""
Plotting the TOP images (from embedding similarities).
TODO: later on, the user can scroll the images and send feedbacks
"""
embedding_similarities = embedding_similarities["embedding_similarities"]
return embedding_similarities[0]["image_url"]
@op("LynxScribe Text RAG Loader", slow=True)
def ls_text_rag_loader(
file_urls,
*,
input_type: RAGVersion = RAGVersion.V1,
vdb_provider_name: str = "faiss",
vdb_num_dimensions: int = 3072,
vdb_collection_name: str = "lynx",
text_embedder_interface: str = "openai",
text_embedder_model_name_or_path: str = "text-embedding-3-large",
# api_key_name: str = "OPENAI_API_KEY",
):
"""
Loading a text-based RAG graph from saved files (getting pandas readable links).
"""
# handling inputs
file_urls = file_urls["file_urls"]
# getting the text embedder instance
llm_params = {"name": text_embedder_interface}
# if api_key_name:
# llm_params["api_key"] = os.getenv(api_key_name)
llm = get_llm_engine(**llm_params)
text_embedder = TextEmbedder(llm=llm, model=text_embedder_model_name_or_path)
# getting the vector store
if vdb_provider_name == "chromadb":
vector_store = get_vector_store(name=vdb_provider_name, collection_name=vdb_collection_name)
elif vdb_provider_name == "faiss":
vector_store = get_vector_store(name=vdb_provider_name, num_dimensions=vdb_num_dimensions)
else:
raise ValueError(f"Vector store name '{vdb_provider_name}' is not supported.")
# building up the RAG graph
rag_graph = RAGGraph(
PandasKnowledgeBaseGraph(vector_store=vector_store, text_embedder=text_embedder)
)
# loading the knowledge base (temporary + TODO: adding v2)
if input_type == RAGVersion.V1:
node_file = [f for f in file_urls if "nodes.p" in f][0]
edge_file = [f for f in file_urls if "edges.p" in f][0]
tempcluster_file = [f for f in file_urls if "clusters.p" in f][0]
rag_graph.kg_base.load_v1_knowledge_base(
nodes_path=node_file,
edges_path=edge_file,
template_cluster_path=tempcluster_file,
)
elif input_type == RAGVersion.V2:
raise ValueError("Currently only v1 input type is supported.")
else:
raise ValueError(f"Input type '{input_type}' is not supported.")
return {"rag_graph": rag_graph}
@op("LynxScribe FAQ to RAG", slow=True)
async def ls_faq_to_rag(
*,
faq_excel_path: str = "",
vdb_provider_name: str = "faiss",
vdb_num_dimensions: int = 3072,
vdb_collection_name: str = "lynx",
text_embedder_interface: str = "openai",
text_embedder_model_name_or_path: str = "text-embedding-3-large",
scenario_cluster_distance_pct: int = 30,
):
"""
Loading a text-based RAG graph from saved files (getting pandas readable links).
"""
# getting the text embedder instance
llm_params = {"name": text_embedder_interface}
llm = get_llm_engine(**llm_params)
text_embedder = TextEmbedder(llm=llm, model=text_embedder_model_name_or_path)
# getting the vector store
if vdb_provider_name == "chromadb":
vector_store = get_vector_store(name=vdb_provider_name, collection_name=vdb_collection_name)
elif vdb_provider_name == "faiss":
vector_store = get_vector_store(name=vdb_provider_name, num_dimensions=vdb_num_dimensions)
else:
raise ValueError(f"Vector store name '{vdb_provider_name}' is not supported.")
# building up the RAG graph
rag_graph = RAGGraph(
PandasKnowledgeBaseGraph(vector_store=vector_store, text_embedder=text_embedder)
)
# loading the knowledge base from the FAQ file
rag_template = RAGTemplate.from_excel_path(
path=faq_excel_path,
faq_data_sheet_name="scenario_examples",
scenario_data_sheet_name="scenario_scripts",
prompt_codes_sheet_name="prompt_dictionary",
)
faq_loader_params = {
"id_column": "scenario_example_ID",
"timestamp_column": "last_modified_timestamp",
"validity_column": "valid_flg",
"question_type_contents_id": ["faq_question", "faq_question", "q_{id}"],
"answer_type_contents_id": ["faq_answer", "{faq_question}\n\n{faq_answer}", "a_{id}"],
"question_to_answer_edge_type_weight": ["qna", 1.0],
}
nodes, edges = FAQTemplateLoader(**faq_loader_params).load_nodes_and_edges(
rag_template.faq_data
)
await rag_graph.kg_base.upsert_nodes(*nodes)
rag_graph.kg_base.upsert_edges(edges)
# Generating scenario clusters
question_ids = [_id for _id in nodes[0] if _id.startswith("q_")]
stored_embeddings = rag_graph.kg_base.vector_store.get(
question_ids, include=["embeddings", "metadatas"]
)
embedding_vals = pd.Series([_emb.value for _emb in stored_embeddings], index=question_ids)
labels = pd.Series(
[_emb.metadata["scenario_name"] for _emb in stored_embeddings], index=question_ids
)
temp_cls = FclusterBasedClustering(distance_percentile=scenario_cluster_distance_pct)
temp_cls.fit(embedding_vals, labels)
df_tempclusters = temp_cls.get_cluster_centers()
# Adding the scenario clusters to the RAG Graph
df_tempclusters["template_id"] = "t_" + df_tempclusters.index.astype(str)
df_tempclusters["embedding"] = df_tempclusters.apply(
lambda row: Embedding(
id=row["template_id"],
value=row["cluster_center"],
metadata={"scenario_name": row["control_label"], "type": "intent_cluster"},
),
axis=1,
)
embedding_list = df_tempclusters["embedding"].tolist()
rag_graph.kg_base.vector_store.upsert(embedding_list)
return {"rag_graph": rag_graph}
@output_on_top
@op("LynxScribe RAG Graph Chatbot Builder")
def ls_rag_chatbot_builder(
rag_graph,
*,
scenario_file: str = "uploads/lynx_chatbot_scenario_selector.yaml",
node_types: str = "intent_cluster",
scenario_meta_name: str = "",
):
"""
Builds up a RAG Graph-based chatbot (basically the loaded RAG graph +
a scenario selector).
TODO: Later, the scenario selector can be built up synthetically from
the input documents - or semi-automated, not just from the scenario
yaml.
"""
scenarios = load_config(scenario_file)
node_types = [t.strip() for t in node_types.split(",")]
# handling inputs
rag_graph = rag_graph["rag_graph"]
parameters = {
"scenarios": [Scenario(**scenario) for scenario in scenarios],
"node_types": node_types,
}
if len(scenario_meta_name) > 0:
parameters["get_scenario_name"] = lambda node: node.metadata[scenario_meta_name]
# loading the scenarios
scenario_selector = ScenarioSelector(**parameters)
# TODO: later we should unify this "knowledge base" object across the functions
# this could be always an input of a RAG Chatbot, but also for other apps.
return {
"knowledge_base": {
"rag_graph": rag_graph,
"scenario_selector": scenario_selector,
}
}
@output_on_top
@ops.input_position(knowledge_base="bottom", chat_processor="bottom")
@op("LynxScribe RAG Graph Chatbot Backend")
def ls_rag_chatbot_backend(
knowledge_base,
chat_processor,
*,
negative_answer=DEFAULT_NEGATIVE_ANSWER,
retriever_limits_by_type="{}",
retriever_strict_limits=True,
retriever_overall_chunk_limit=20,
retriever_overall_token_limit=3000,
retriever_max_iterations=3,
llm_interface: str = "openai",
llm_model_name: str = "gpt-4o",
# api_key_name: str = "OPENAI_API_KEY",
):
"""
Returns with a chatbot instance.
"""
# handling_inputs
rag_graph = knowledge_base[0]["knowledge_base"]["rag_graph"]
scenario_selector = knowledge_base[0]["knowledge_base"]["scenario_selector"]
chat_processor = chat_processor[0]["chat_processor"]
limits_by_type = json.loads(retriever_limits_by_type)
# connecting to the LLM
llm_params = {"name": llm_interface}
# if api_key_name:
# llm_params["api_key"] = os.getenv(api_key_name)
llm = get_llm_engine(**llm_params)
# setting the parameters
params = {
"limits_by_type": limits_by_type,
"strict_limits": retriever_strict_limits,
"max_results": retriever_overall_chunk_limit,
"token_limit": retriever_overall_token_limit,
"max_iterations": retriever_max_iterations,
}
# generating the RAG Chatbot
rag_chatbot = RAGChatbot(
rag_graph=rag_graph,
scenario_selector=scenario_selector,
llm=llm,
negative_answer=negative_answer,
**params,
)
# generating the chatbot back-end
c = ChatAPI(
chatbot=rag_chatbot,
chat_processor=chat_processor,
model=llm_model_name,
)
return {"chat_api": c}
@output_on_top
@ops.input_position(processor="bottom")
@op("Chat processor")
def chat_processor(processor, *, _ctx: one_by_one.Context):
cfg = _ctx.last_result or {
"question_processors": [],
"answer_processors": [],
"masks": [],
}
for f in ["question_processor", "answer_processor", "mask"]:
if f in processor:
cfg[f + "s"].append(processor[f])
question_processors = cfg["question_processors"][:]
answer_processors = cfg["answer_processors"][:]
masking_templates = {}
for mask in cfg["masks"]:
masking_templates[mask["name"]] = mask
if masking_templates:
question_processors.append(MaskTemplate(masking_templates=masking_templates))
answer_processors.append(MaskTemplate(masking_templates=masking_templates))
chat_processor = ChatProcessor(
question_processors=question_processors, answer_processors=answer_processors
)
return {"chat_processor": chat_processor, **cfg}
@output_on_top
@op("LynxScribe Message")
def lynxscribe_message(
*, prompt_role: MessageRole = MessageRole.SYSTEM, prompt_content: ops.LongStr
):
return_message = Message(role=prompt_role.value, content=prompt_content.strip())
return {"prompt_message": return_message}
@op("Read Excel")
def read_excel(*, file_path: str, sheet_name: str = "Sheet1", columns: str = ""):
"""
Reads an Excel file and returns the content of the specified sheet.
The columns parameter can be used to specify which columns to include in the output.
If not specified, all columns will be included (separate the values by comma).
TODO: more general: several input/output versions.
"""
df = pd.read_excel(file_path, sheet_name=sheet_name)
if columns:
columns = [c.strip() for c in columns.split(",") if c.strip()]
columns = [c for c in columns if c in df.columns]
if len(columns) == 0:
raise ValueError("No valid columns specified.")
df = df[columns].copy()
return {"dataframe": df}
@ops.input_position(system_prompt="bottom", instruction_prompt="bottom", dataframe="left")
@op("LynxScribe Task Solver", slow=True)
async def ls_task_solver(
system_prompt,
instruction_prompt,
dataframe,
*,
llm_interface: str = "openai",
llm_model_name: str = "gpt-4o",
new_column_names: str = "processed_field",
# api_key_name: str = "OPENAI_API_KEY",
):
"""
Solving the described task on a data frame and put the results into a new column.
If there are multiple new_column_names provided, the structured dictionary output
will be split into multiple columns.
"""
# handling inputs
system_message = system_prompt[0]["prompt_message"]
instruction_message = instruction_prompt[0]["prompt_message"]
df = dataframe["dataframe"]
# preparing output
out_df = df.copy()
# connecting to the LLM
llm_params = {"name": llm_interface}
# if api_key_name:
# llm_params["api_key"] = os.getenv(api_key_name)
llm = get_llm_engine(**llm_params)
# getting the list of fieldnames used in the instruction message
fieldnames = []
for pot_fieldname in df.columns:
if "{" + pot_fieldname + "}" in instruction_message.content:
fieldnames.append(pot_fieldname)
# generate a list of instruction messages (from fieldnames)
# each row of the df is a separate instruction message
# TODO: make it fast for large dataframes
instruction_messages = []
for i in range(len(df)):
instruction_message_i = deepcopy(instruction_message)
for fieldname in fieldnames:
instruction_message_i.content = instruction_message_i.content.replace(
"{" + fieldname + "}", str(df.iloc[i][fieldname])
)
instruction_messages.append(instruction_message_i)
# generate completition prompt
completion_prompts = [
ChatCompletionPrompt(
model=llm_model_name,
messages=[system_message, instruction_message_j],
)
for instruction_message_j in instruction_messages
]
# get the answers
tasks = [llm.acreate_completion(completion_prompt=_prompt) for _prompt in completion_prompts]
out_completions = await asyncio.gather(*tasks)
# answer post-processing: 1 vs more columns
col_list = [_c.strip() for _c in new_column_names.split(",") if _c.strip()]
if len(col_list) == 0:
raise ValueError("No valid column names specified.")
elif len(col_list) == 1:
out_df[col_list[0]] = [result.choices[0].message.content for result in out_completions]
else:
answers = [
dictionary_corrector(result.choices[0].message.content, expected_keys=col_list)
for result in out_completions
]
for i, col in enumerate(col_list):
out_df[col] = [answer[col] for answer in answers]
return {"dataframe": out_df}
@output_on_top
@op("Truncate history")
def truncate_history(*, max_tokens=10000):
return {"question_processor": TruncateHistory(max_tokens=max_tokens)}
@output_on_top
@op("Mask")
def mask(*, name="", regex="", exceptions="", mask_pattern=""):
exceptions = [e.strip() for e in exceptions.split(",") if e.strip()]
return {
"mask": {
"name": name,
"regex": regex,
"exceptions": exceptions,
"mask_pattern": mask_pattern,
}
}
@ops.input_position(chat_api="bottom")
@op("Test Chat API", slow=True)
async def test_chat_api(message, chat_api, *, show_details=False):
chat_api = chat_api[0]["chat_api"]
request = ChatCompletionPrompt(
model="",
messages=[{"role": "user", "content": message["text"]}],
)
response = await chat_api.answer(request, stream=False)
if len(response.choices) == 0:
answer = "The following FAQ items are similar to the question:\n"
for item in response.sources:
answer += f"------------------------------------------------------ \n{item.body}\n\n"
else:
answer = response.choices[0].message.content
if show_details:
return {"answer": answer, **response.__dict__}
else:
return {"answer": answer}
@op("Input chat")
def input_chat(*, chat: str):
return {"text": chat}
@ops.input_position(input="bottom")
@op("View DataFrame", view="table_view")
def view_df(input):
df = input[0]["dataframe"]
v = {
"dataframes": {
"df": {
"columns": [str(c) for c in df.columns],
"data": df.values.tolist(),
}
}
}
return v
@op("View", view="table_view")
def view(input):
columns = [str(c) for c in input.keys() if not str(c).startswith("_")]
v = {
"dataframes": {
"df": {
"columns": columns,
"data": [[input[c] for c in columns]],
}
}
}
return v
async def get_chat_api(ws: str):
from lynxkite.core import workspace
cwd = pathlib.Path()
path = cwd / (ws + ".lynxkite.json")
assert path.is_relative_to(cwd), f"Path '{path}' is invalid"
assert path.exists(), f"Workspace {path} does not exist"
ws = workspace.Workspace.load(path)
# Remove any test nodes.
ws.nodes = [op for op in ws.nodes if op.data.title != "Test Chat API"]
ws.normalize()
executor = ops.EXECUTORS[ENV]
contexts = await executor(ws)
nodes = [op for op in ws.nodes if op.data.title == "LynxScribe RAG Graph Chatbot Backend"]
[node] = nodes
context = contexts[node.id]
return context.last_result["chat_api"]
async def stream_chat_api_response(request):
chat_api = await get_chat_api(request["model"])
request = ChatCompletionPrompt(**request)
async for chunk in await chat_api.answer(request, stream=True):
chunk.sources = []
yield chunk.model_dump_json()
async def get_chat_api_response(request):
chat_api = await get_chat_api(request["model"])
request = ChatCompletionPrompt(**request)
response = await chat_api.answer(request, stream=False)
response.sources = []
return response.model_dump_json()
async def api_service_post(request):
"""
Serves a chat endpoint that matches LynxScribe's interface.
To access it you need to add the "module" and "workspace"
parameters.
The workspace must contain exactly one "Chat API" node.
curl -X POST ${LYNXKITE_URL}/api/service/server.lynxkite_ops \
-H "Content-Type: application/json" \
-d '{
"model": "LynxScribe demo",
"messages": [{"role": "user", "content": "what does the fox say"}]
}'
"""
path = "/".join(request.url.path.split("/")[4:])
request = await request.json()
if path == "chat/completions":
if request["stream"]:
from sse_starlette.sse import EventSourceResponse
return EventSourceResponse(stream_chat_api_response(request))
else:
return await get_chat_api_response(request)
return {"error": "Not found"}
async def api_service_get(request):
path = "/".join(request.url.path.split("/")[4:])
if path == "models":
return {
"object": "list",
"data": [
{
"id": ws.removesuffix(".lynxkite.json"),
"object": "model",
"created": 0,
"owned_by": "lynxkite",
"meta": {"profile_image_url": "https://lynxkite.com/favicon.png"},
}
for ws in get_lynxscribe_workspaces()
],
}
return {"error": "Not found"}
def get_lynxscribe_workspaces() -> list[str]:
from lynxkite.core import workspace
workspaces = []
for p in pathlib.Path().glob("**/*"):
if p.is_file():
try:
ws = workspace.Workspace.load(p)
if ws.env == ENV:
workspaces.append(str(p))
except Exception:
pass # Ignore files that are not valid workspaces.
workspaces.sort()
return workspaces
def dictionary_corrector(dict_string: str, expected_keys: list | None = None) -> dict:
"""
Processing LLM outputs: when the LLM returns with a dictionary (in a string format). It optionally
crosschecks the input with the expected keys and return a dictionary with the expected keys and their
values ('unknown' if not present). If there is an error during the processing, it will return with
a dictionary of the expected keys, all with 'error' as a value (or with an empty dictionary).
Currently the function does not delete the extra key-value pairs.
"""
out_dict = {}
if len(dict_string) == 0:
return out_dict
# deleting the optional text before the first and after the last curly brackets
dstring_prc = dict_string
if dstring_prc[0] != "{":
dstring_prc = "{" + "{".join(dstring_prc.split("{")[1:])
if dstring_prc[-1] != "}":
dstring_prc = "}".join(dstring_prc.split("}")[:-1]) + "}"
try:
trf_dict = json.loads(dstring_prc)
if expected_keys:
for _key in expected_keys:
if _key in trf_dict:
out_dict[_key] = trf_dict[_key]
else:
out_dict[_key] = "unknown"
else:
out_dict = trf_dict
except Exception:
if expected_keys:
for _key in expected_keys:
out_dict[_key] = "error"
return out_dict
|