Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import queue
|
2 |
+
import threading
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
from dia.model import Dia
|
6 |
+
from huggingface_hub import InferenceClient
|
7 |
+
|
8 |
+
# Hardcoded podcast subject
|
9 |
+
PODCAST_SUBJECT = "The future of AI and its impact on society"
|
10 |
+
|
11 |
+
# Initialize the inference client
|
12 |
+
client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct", provider="together")
|
13 |
+
model = Dia.from_pretrained("nari-labs/Dia-1.6B", compute_dtype="float16")
|
14 |
+
|
15 |
+
# Queue for audio streaming
|
16 |
+
audio_queue = queue.Queue()
|
17 |
+
stop_signal = threading.Event()
|
18 |
+
|
19 |
+
|
20 |
+
def generate_podcast_text(subject):
|
21 |
+
prompt = f"""Generate a podcast told by 2 hosts about {subject}.
|
22 |
+
The podcast should be an insightful discussion, with some amount of playful banter.
|
23 |
+
Separate dialog as follows using [S1] for the male host and [S2] for the female host, for instance:
|
24 |
+
[S1] Hello, how are you?
|
25 |
+
[S2] I'm good, thank you. How are you?
|
26 |
+
[S1] I'm good, thank you. (laughs)
|
27 |
+
[S2] Great.
|
28 |
+
Now go on, make 2 minutes of podcast.
|
29 |
+
"""
|
30 |
+
response = client.chat_completion([{"role": "user", "content": prompt}], max_tokens=1000)
|
31 |
+
return response.choices[0].message.content
|
32 |
+
|
33 |
+
|
34 |
+
def split_podcast_into_chunks(podcast_text, chunk_size=10):
|
35 |
+
lines = podcast_text.strip().split("\n")
|
36 |
+
chunks = []
|
37 |
+
|
38 |
+
for i in range(0, len(lines), chunk_size):
|
39 |
+
chunk = "\n".join(lines[i : i + chunk_size])
|
40 |
+
chunks.append(chunk)
|
41 |
+
|
42 |
+
return chunks
|
43 |
+
|
44 |
+
|
45 |
+
def process_audio_chunks(podcast_text):
|
46 |
+
chunks = split_podcast_into_chunks(podcast_text)
|
47 |
+
|
48 |
+
for chunk in chunks:
|
49 |
+
if stop_signal.is_set():
|
50 |
+
break
|
51 |
+
|
52 |
+
audio_chunk = model.generate(chunk, use_torch_compile=True, verbose=False)
|
53 |
+
audio_queue.put(audio_chunk)
|
54 |
+
|
55 |
+
audio_queue.put(None)
|
56 |
+
|
57 |
+
|
58 |
+
def stream_audio_generator(podcast_text):
|
59 |
+
"""Creates a generator that yields audio chunks for streaming"""
|
60 |
+
stop_signal.clear()
|
61 |
+
|
62 |
+
# Start audio generation in a separate thread
|
63 |
+
gen_thread = threading.Thread(target=process_audio_chunks, args=(podcast_text,))
|
64 |
+
gen_thread.start()
|
65 |
+
|
66 |
+
sample_rate = 22050
|
67 |
+
|
68 |
+
try:
|
69 |
+
while True:
|
70 |
+
# Get next chunk from queue
|
71 |
+
chunk = audio_queue.get()
|
72 |
+
|
73 |
+
# None signals end of generation
|
74 |
+
if chunk is None:
|
75 |
+
break
|
76 |
+
|
77 |
+
# Yield the audio chunk with sample rate
|
78 |
+
yield (sample_rate, chunk)
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
print(f"Error in streaming: {e}")
|
82 |
+
|
83 |
+
|
84 |
+
def stop_generation():
|
85 |
+
stop_signal.set()
|
86 |
+
return "Generation stopped"
|
87 |
+
|
88 |
+
|
89 |
+
def generate_podcast():
|
90 |
+
podcast_text = generate_podcast_text(PODCAST_SUBJECT)
|
91 |
+
return podcast_text
|
92 |
+
|
93 |
+
|
94 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
95 |
+
gr.Markdown("# NotebookLM Podcast Generator")
|
96 |
+
|
97 |
+
with gr.Row():
|
98 |
+
with gr.Column(scale=2):
|
99 |
+
gr.Markdown(f"## Current Topic: {PODCAST_SUBJECT}")
|
100 |
+
gr.Markdown("This app generates a podcast discussion between two hosts about the specified topic.")
|
101 |
+
|
102 |
+
generate_btn = gr.Button("Generate Podcast Script", variant="primary")
|
103 |
+
podcast_output = gr.Textbox(label="Generated Podcast Script", lines=15)
|
104 |
+
|
105 |
+
gr.Markdown("## Audio Preview")
|
106 |
+
gr.Markdown("Click below to hear the podcast with realistic voices:")
|
107 |
+
|
108 |
+
with gr.Row():
|
109 |
+
start_audio_btn = gr.Button("▶️ Generate Podcast", variant="secondary")
|
110 |
+
stop_btn = gr.Button("⏹️ Stop", variant="stop")
|
111 |
+
|
112 |
+
audio_output = gr.Audio(label="Podcast Audio", streaming=True)
|
113 |
+
status_text = gr.Textbox(label="Status", visible=True)
|
114 |
+
|
115 |
+
generate_btn.click(fn=generate_podcast, outputs=podcast_output)
|
116 |
+
|
117 |
+
start_audio_btn.click(fn=stream_audio_generator, inputs=podcast_output, outputs=audio_output)
|
118 |
+
stop_btn.click(fn=stop_generation, outputs=status_text)
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
demo.queue().launch()
|