import gradio as gr
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_core.runnables import RunnableConfig
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide two numbers."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers."""
return a % b
@tool
def wiki_search(query: str) -> dict:
"""Search Wikipedia for a query and return maximum 2 results."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content}\n'
for doc in search_docs
]
)
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> dict:
"""Search Tavily for a query and return maximum 3 results."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content}\n'
for doc in search_docs
]
)
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> dict:
"""Search Arxiv for a query and return maximum 3 results."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content[:1000]}\n'
for doc in search_docs
]
)
return {"arvix_results": formatted_search_docs}
# 🧰 All tools
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
]
# 📄 Load system prompt
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
# 🧠LLM setup (ChatHuggingFace via hosted endpoint)
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
endpoint_url="Qwen/Qwen2.5-Coder-32B-Instruct"
# huggingfacehub_api_token="your_huggingface_token_here", # Replace this
),
temperature=0,
)
llm_with_tools = llm.bind_tools(tools)
# 🧠Assistant node logic
def assistant(state: MessagesState):
return {"messages": [llm_with_tools.invoke(state["messages"])]}
# 🧠LangGraph setup
def build_graph():
from langchain_core.messages import HumanMessage, SystemMessage
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint
(
model="Qwen/Qwen2.5-Coder-32B-Instruct",
),
temperature=0,
verbose=True
)
llm_with_tools = llm.bind_tools(tools)
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
messages = [sys_msg]
# llm_with_tools = llm.invoke(messages)
return llm_with_tools, messages