import gradio as gr from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from langchain_core.messages import SystemMessage, HumanMessage, AIMessage from langchain_core.tools import tool from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_community.tools.tavily_search import TavilySearchResults from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint from langchain_core.runnables import RunnableConfig @tool def multiply(a: int, b: int) -> int: """Multiply two numbers.""" return a * b @tool def add(a: int, b: int) -> int: """Add two numbers.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtract two numbers.""" return a - b @tool def divide(a: int, b: int) -> float: """Divide two numbers.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers.""" return a % b @tool def wiki_search(query: str) -> dict: """Search Wikipedia for a query and return maximum 2 results.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ] ) return {"wiki_results": formatted_search_docs} @tool def web_search(query: str) -> dict: """Search Tavily for a query and return maximum 3 results.""" search_docs = TavilySearchResults(max_results=3).invoke(query=query) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ] ) return {"web_results": formatted_search_docs} @tool def arvix_search(query: str) -> dict: """Search Arxiv for a query and return maximum 3 results.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ] ) return {"arvix_results": formatted_search_docs} # 🧰 All tools tools = [ multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search, ] # 📄 Load system prompt with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() sys_msg = SystemMessage(content=system_prompt) # 🧠 LLM setup (ChatHuggingFace via hosted endpoint) llm = ChatHuggingFace( llm=HuggingFaceEndpoint( endpoint_url="Qwen/Qwen2.5-Coder-32B-Instruct" # huggingfacehub_api_token="your_huggingface_token_here", # Replace this ), temperature=0, ) llm_with_tools = llm.bind_tools(tools) # 🧠 Assistant node logic def assistant(state: MessagesState): return {"messages": [llm_with_tools.invoke(state["messages"])]} # 🧠 LangGraph setup def build_graph(): from langchain_core.messages import HumanMessage, SystemMessage llm = ChatHuggingFace( llm=HuggingFaceEndpoint ( model="Qwen/Qwen2.5-Coder-32B-Instruct", ), temperature=0, verbose=True ) llm_with_tools = llm.bind_tools(tools) with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() sys_msg = SystemMessage(content=system_prompt) messages = [sys_msg] # llm_with_tools = llm.invoke(messages) return llm_with_tools, messages