""" Enhanced tools for GAIA Agent including Wikipedia search, file processing, and web browsing. """ import os import json import requests import wikipedia from typing import Optional, Dict, Any, List from langchain.tools import Tool from langchain_community.tools import DuckDuckGoSearchRun import pandas as pd from PIL import Image import PyPDF2 from bs4 import BeautifulSoup from io import BytesIO class WikipediaSearchTool: """Tool for searching Wikipedia with better error handling and content extraction.""" def __init__(self): wikipedia.set_lang("en") def search_wikipedia(self, query: str, max_results: int = 3) -> str: """ Search Wikipedia for information and return a summary. Args: query: Search query string max_results: Maximum number of results to return Returns: Formatted string with search results """ try: # Search for pages search_results = wikipedia.search(query, results=max_results) if not search_results: return f"No Wikipedia articles found for query: '{query}'" results = [] for title in search_results[:max_results]: try: # Get page summary page = wikipedia.page(title) summary = wikipedia.summary(title, sentences=3) results.append({ "title": page.title, "url": page.url, "summary": summary }) except wikipedia.exceptions.DisambiguationError as e: # Handle disambiguation by taking the first option try: page = wikipedia.page(e.options[0]) summary = wikipedia.summary(e.options[0], sentences=3) results.append({ "title": page.title, "url": page.url, "summary": summary }) except: continue except wikipedia.exceptions.PageError: continue except Exception as e: continue if not results: return f"Could not retrieve information for query: '{query}'" # Format results formatted_results = f"Wikipedia search results for '{query}':\n\n" for i, result in enumerate(results, 1): formatted_results += f"{i}. **{result['title']}**\n" formatted_results += f" URL: {result['url']}\n" formatted_results += f" Summary: {result['summary']}\n\n" return formatted_results except Exception as e: return f"Error searching Wikipedia: {str(e)}" class FileProcessorTool: """Tool for processing various file formats (PDF, Excel, images, etc.).""" def process_file(self, file_path: str) -> str: """ Process different file types and extract content/information. Args: file_path: Path to the file to process Returns: Extracted content or file information """ try: if not os.path.exists(file_path): return f"File not found: {file_path}" file_extension = os.path.splitext(file_path)[1].lower() if file_extension == '.pdf': return self._process_pdf(file_path) elif file_extension in ['.xlsx', '.xls', '.csv']: return self._process_spreadsheet(file_path) elif file_extension in ['.jpg', '.jpeg', '.png', '.gif', '.bmp']: return self._process_image(file_path) elif file_extension == '.txt': return self._process_text(file_path) else: return f"Unsupported file type: {file_extension}" except Exception as e: return f"Error processing file {file_path}: {str(e)}" def _process_pdf(self, file_path: str) -> str: """Extract text from PDF file.""" try: with open(file_path, 'rb') as file: pdf_reader = PyPDF2.PdfReader(file) text_content = "" for page_num in range(len(pdf_reader.pages)): page = pdf_reader.pages[page_num] text_content += page.extract_text() + "\n" return f"PDF Content from {file_path}:\n{text_content[:2000]}..." if len(text_content) > 2000 else f"PDF Content from {file_path}:\n{text_content}" except Exception as e: return f"Error reading PDF: {str(e)}" def _process_spreadsheet(self, file_path: str) -> str: """Process Excel/CSV files and extract data information.""" try: if file_path.endswith('.csv'): df = pd.read_csv(file_path) else: df = pd.read_excel(file_path) info = f"Spreadsheet Analysis for {file_path}:\n" info += f"Shape: {df.shape[0]} rows, {df.shape[1]} columns\n" info += f"Columns: {', '.join(df.columns.tolist())}\n\n" # Show first few rows info += "First 5 rows:\n" info += df.head().to_string() + "\n\n" # Basic statistics for numeric columns numeric_cols = df.select_dtypes(include=['number']).columns if len(numeric_cols) > 0: info += "Numeric column statistics:\n" info += df[numeric_cols].describe().to_string() + "\n\n" # Calculate totals if there are numeric columns if len(numeric_cols) > 0: info += "Column totals:\n" for col in numeric_cols: total = df[col].sum() info += f"{col}: {total}\n" return info except Exception as e: return f"Error reading spreadsheet: {str(e)}" def _process_image(self, file_path: str) -> str: """Process image files and return basic information.""" try: with Image.open(file_path) as img: info = f"Image Analysis for {file_path}:\n" info += f"Size: {img.size[0]} x {img.size[1]} pixels\n" info += f"Mode: {img.mode}\n" info += f"Format: {img.format}\n" # Note: For GAIA tasks, you might need OCR or more advanced image analysis info += "\nNote: For text extraction from images, OCR tools would be needed.\n" return info except Exception as e: return f"Error processing image: {str(e)}" def _process_text(self, file_path: str) -> str: """Process text files.""" try: with open(file_path, 'r', encoding='utf-8') as file: content = file.read() return f"Text file content from {file_path}:\n{content[:2000]}..." if len(content) > 2000 else f"Text file content from {file_path}:\n{content}" except Exception as e: return f"Error reading text file: {str(e)}" class EnhancedWebSearchTool: """Enhanced web search tool with better result processing.""" def __init__(self): self.search_tool = DuckDuckGoSearchRun() def search_web(self, query: str, max_results: int = 5) -> str: """ Perform web search with enhanced result processing. Args: query: Search query string max_results: Maximum number of results to consider Returns: Formatted search results """ try: results = self.search_tool.invoke(query) # Process and format results better formatted_results = f"Web search results for '{query}':\n\n" formatted_results += results return formatted_results except Exception as e: return f"Error performing web search: {str(e)}" class CalculationTool: """Tool for performing calculations and data analysis.""" def calculate(self, expression: str) -> str: """ Safely evaluate mathematical expressions. Args: expression: Mathematical expression to evaluate Returns: Result of the calculation """ try: # Only allow safe mathematical operations allowed_chars = set('0123456789+-*/().% ') if not all(c in allowed_chars for c in expression.replace(' ', '')): return f"Invalid characters in expression: {expression}" result = eval(expression) return f"Calculation result: {expression} = {result}" except Exception as e: return f"Error in calculation: {str(e)}" def create_gaia_tools() -> List[Tool]: """Create all tools needed for GAIA benchmark tasks.""" # Initialize tool classes wiki_tool = WikipediaSearchTool() file_tool = FileProcessorTool() web_tool = EnhancedWebSearchTool() calc_tool = CalculationTool() # Create LangChain Tool objects tools = [ Tool( name="wikipedia_search", func=wiki_tool.search_wikipedia, description="Search Wikipedia for information about any topic. Use this for factual information, historical data, scientific concepts, etc. Input should be a clear search query." ), Tool( name="file_processor", func=file_tool.process_file, description="Process and analyze files (PDF, Excel, images, text). Input should be the file path. Returns file content, data analysis, or file information." ), Tool( name="web_search", func=web_tool.search_web, description="Search the web for current information, news, or specific websites. Use this when you need up-to-date information not available in Wikipedia." ), Tool( name="calculator", func=calc_tool.calculate, description="Perform mathematical calculations. Input should be a mathematical expression using +, -, *, /, (), %. Example: '(100 + 50) * 0.15'" ) ] return tools if __name__ == "__main__": # Test the tools tools = create_gaia_tools() # Test Wikipedia search wiki_result = tools[0].func("Artificial Intelligence") print("Wikipedia test:") print(wiki_result[:500] + "...\n") # Test web search web_result = tools[2].func("latest AI news 2024") print("Web search test:") print(web_result[:500] + "...\n") # Test calculator calc_result = tools[3].func("(100 + 50) * 2") print("Calculator test:") print(calc_result)