Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
-
from PIL import Image
|
4 |
import torch
|
|
|
5 |
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration
|
6 |
|
7 |
# Get Hugging Face API key from environment variables
|
@@ -46,7 +47,7 @@ if uploaded_file:
|
|
46 |
# User input for task selection
|
47 |
task = st.selectbox(
|
48 |
"Select a task:",
|
49 |
-
["Generate a caption", "Answer a question", "Detect objects", "
|
50 |
)
|
51 |
|
52 |
# User prompt
|
@@ -62,4 +63,22 @@ if uploaded_file:
|
|
62 |
generation = generation[0][input_len:] # Remove input tokens from output
|
63 |
answer = processor.decode(generation, skip_special_tokens=True)
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
import torch
|
5 |
+
import re
|
6 |
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration
|
7 |
|
8 |
# Get Hugging Face API key from environment variables
|
|
|
47 |
# User input for task selection
|
48 |
task = st.selectbox(
|
49 |
"Select a task:",
|
50 |
+
["Generate a caption", "Answer a question", "Detect objects", "Segment"]
|
51 |
)
|
52 |
|
53 |
# User prompt
|
|
|
63 |
generation = generation[0][input_len:] # Remove input tokens from output
|
64 |
answer = processor.decode(generation, skip_special_tokens=True)
|
65 |
|
66 |
+
# Function to highlight <segXXX> values in yellow
|
67 |
+
def highlight_segments(text):
|
68 |
+
return re.sub(r"(<seg\d+>)", r'<span style="background-color:yellow; padding:3px; border-radius:3px;">\1</span>', text)
|
69 |
+
|
70 |
+
# Display output based on task selection
|
71 |
+
if task == "Segment":
|
72 |
+
highlighted_answer = highlight_segments(answer)
|
73 |
+
st.markdown(f'<p style="font-size:16px;">✅ Result: {highlighted_answer}</p>', unsafe_allow_html=True)
|
74 |
+
else:
|
75 |
+
st.success(f"✅ Result: {answer}")
|
76 |
+
|
77 |
+
# Draw red bounding box for object detection
|
78 |
+
if task == "Detect objects":
|
79 |
+
draw = ImageDraw.Draw(image)
|
80 |
+
# Placeholder: Replace with actual detection logic
|
81 |
+
boxes = [(50, 50, 200, 200), (250, 100, 400, 300)] # Example boxes
|
82 |
+
for box in boxes:
|
83 |
+
draw.rectangle(box, outline="red", width=3)
|
84 |
+
st.image(image, caption="Detected Objects", use_container_width=True)
|