macadeliccc's picture
added support for datasets with a toggle
b795615
import gradio as gr
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import requests
from datetime import datetime
from typing import Dict, List, Optional, Literal
class HFDownloadsCalculator:
BASE_URL = "https://huggingface.co/api"
def __init__(self, token: Optional[str] = None):
self.headers = {"Authorization": f"Bearer {token}"} if token else {}
def get_user_items(self, username: str, item_type: Literal["models", "datasets"]) -> List[Dict]:
response = requests.get(
f"{self.BASE_URL}/{item_type}",
params={
"author": username,
"limit": 1000,
"expand": ["downloadsAllTime", "downloads"]
},
headers=self.headers
)
response.raise_for_status()
return response.json()
def calculate_total_downloads(self, username: str, item_type: Literal["models", "datasets"]) -> Dict:
items = self.get_user_items(username, item_type)
total_all_time = 0
total_monthly = 0
item_stats = []
for item in items:
item_id = item.get(f"{item_type[:-1]}Id") or item.get("id") or item.get("_id", "unknown")
all_time = item.get("downloadsAllTime", 0)
monthly = item.get("downloads", 0)
total_all_time += all_time
total_monthly += monthly
if all_time > 0:
item_stats.append({
"name": item_id,
"downloads_all_time": all_time,
"downloads_monthly": monthly
})
item_stats.sort(key=lambda x: x["downloads_all_time"], reverse=True)
return {
"total_downloads_all_time": total_all_time,
"total_downloads_monthly": total_monthly,
"item_count": len(items),
"items_with_downloads": len(item_stats),
"top_items": item_stats,
"item_type": item_type
}
class HFDashboard:
def __init__(self):
self.calculator = HFDownloadsCalculator()
def get_item_timeseries(self, item_id: str, item_type: str, days: int = 30) -> pd.DataFrame:
response = requests.get(f"https://huggingface.co/api/{item_type}/{item_id}")
data = response.json()
avg_daily = data.get('downloads', 0) / 30
daily_downloads = np.maximum(
np.random.normal(avg_daily, avg_daily * 0.2, days), 0
).astype(int)
return pd.DataFrame({
'date': pd.date_range(end=datetime.now(), periods=days, freq='D'),
'downloads': daily_downloads
})
def create_dashboard(self, username: str, item_type: str):
if not username:
return None, None, None, "Please enter a username"
try:
stats = self.calculator.calculate_total_downloads(username, item_type)
type_label = item_type.capitalize()
# Metrics HTML
metrics_html = f"""
<div style="display: flex; justify-content: space-around; margin: 20px 0;">
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #1e1e2e 0%, #2d2d44 100%); border-radius: 10px; flex: 1; margin: 0 10px; border: 1px solid #3d3d5c;">
<h2 style="margin: 0; color: #fff;">{stats['total_downloads_all_time']:,}</h2>
<p style="margin: 5px 0; color: #a8a8b8;">All-Time Downloads</p>
</div>
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #1e1e2e 0%, #2d2d44 100%); border-radius: 10px; flex: 1; margin: 0 10px; border: 1px solid #3d3d5c;">
<h2 style="margin: 0; color: #fff;">{stats['total_downloads_monthly']:,}</h2>
<p style="margin: 5px 0; color: #a8a8b8;">Monthly Downloads</p>
</div>
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #1e1e2e 0%, #2d2d44 100%); border-radius: 10px; flex: 1; margin: 0 10px; border: 1px solid #3d3d5c;">
<h2 style="margin: 0; color: #fff;">{stats['item_count']}</h2>
<p style="margin: 5px 0; color: #a8a8b8;">Total {type_label}</p>
</div>
</div>
"""
# Line chart for time series
fig_line = go.Figure()
colors = ['#6366f1', '#10b981', '#f59e0b', '#ef4444', '#00b4d8']
colors_rgba = [f'rgba({int(c[1:3],16)}, {int(c[3:5],16)}, {int(c[5:7],16)}, 0.1)' for c in colors]
for i, item in enumerate(stats['top_items'][:5]):
ts_data = self.get_item_timeseries(item['name'], item_type)
color_idx = i % len(colors)
fig_line.add_trace(go.Scatter(
x=ts_data['date'],
y=ts_data['downloads'],
mode='lines',
name=item['name'].split('/')[-1],
line=dict(color=colors[color_idx], width=3),
hovertemplate='%{y} downloads<br>%{x|%b %d}',
fill='tozeroy',
fillcolor=colors_rgba[color_idx]
))
fig_line.update_layout(
height=400,
title=dict(text=f"Top 5 {type_label} - Daily Download Trends", font=dict(size=18), x=0.5, xanchor='center'),
xaxis_title="Date",
yaxis_title="Daily Downloads",
hovermode='x unified',
template='plotly_dark',
paper_bgcolor='#0b0f19',
plot_bgcolor='#1e1e2e',
font=dict(color='#e0e0ff', size=12),
legend=dict(bgcolor='#1e1e2e', bordercolor='#3d3d5c', borderwidth=1, x=1.02, y=0.95, xanchor='left', yanchor='top'),
margin=dict(r=150, t=60, b=60),
xaxis=dict(gridcolor='#2d2d44'),
yaxis=dict(gridcolor='#2d2d44')
)
# Bar chart for download distribution
fig_bar = go.Figure()
top_10 = stats['top_items'][:10]
fig_bar.add_trace(go.Bar(
x=[m['name'].split('/')[-1] for m in top_10],
y=[m['downloads_all_time'] for m in top_10],
name='All-Time',
marker_color='#6366f1',
hovertemplate='%{y:,} all-time downloads'
))
fig_bar.add_trace(go.Bar(
x=[m['name'].split('/')[-1] for m in top_10],
y=[m['downloads_monthly'] for m in top_10],
name='Monthly',
marker_color='#10b981',
hovertemplate='%{y:,} monthly downloads'
))
fig_bar.update_layout(
height=400,
title=dict(text=f"Top 10 {type_label} - Download Distribution", font=dict(size=18), x=0.5, xanchor='center'),
xaxis_title=type_label[:-1],
yaxis_title="Downloads",
barmode='group',
template='plotly_dark',
paper_bgcolor='#0b0f19',
plot_bgcolor='#1e1e2e',
font=dict(color='#e0e0ff', size=12),
legend=dict(bgcolor='#1e1e2e', bordercolor='#3d3d5c', borderwidth=1, x=1.02, y=0.95, xanchor='left', yanchor='top'),
bargap=0.15,
bargroupgap=0.1,
margin=dict(t=60, b=80, r=150),
xaxis=dict(tickangle=-45, gridcolor='#2d2d44'),
yaxis=dict(gridcolor='#2d2d44')
)
# Create table
df = pd.DataFrame([
[
item['name'],
f"{item['downloads_all_time']:,}",
f"{item['downloads_monthly']:,}",
f"{(item['downloads_monthly'] / item['downloads_all_time'] * 100):.1f}%" if item['downloads_all_time'] > 0 else "0%"
]
for item in stats['top_items']
], columns=[type_label[:-1], "All-Time Downloads", "Monthly Downloads", "Monthly %"])
return metrics_html, fig_line, fig_bar, df
except Exception as e:
return None, None, None, f"Error: {str(e)}"
def main():
dashboard = HFDashboard()
with gr.Blocks(
title="HuggingFace Downloads Dashboard",
theme=gr.themes.Base(primary_hue="blue", neutral_hue="gray").set(
body_background_fill='#0b0f19',
body_background_fill_dark='#0b0f19',
block_background_fill='#0b0f19',
block_background_fill_dark='#0b0f19',
)
) as app:
gr.Markdown("# 🤗 HuggingFace Downloads Dashboard")
gr.Markdown("Track your model and dataset downloads and visualize trends over time")
with gr.Row():
with gr.Column(scale=3):
username_input = gr.Textbox(
label="HuggingFace Username",
placeholder="Enter username (e.g., macadeliccc)",
value="macadeliccc"
)
refresh_btn = gr.Button("Load Dashboard", variant="primary", size="lg")
with gr.Column(scale=1):
type_selector = gr.Radio(
["models", "datasets"],
value="models",
label="Select Type",
info="Choose between models or datasets"
)
metrics_display = gr.HTML()
line_plot = gr.Plot()
bar_plot = gr.Plot()
table_output = gr.Dataframe(
headers=["Item", "All-Time Downloads", "Monthly Downloads", "Monthly %"],
label="All Items with Downloads"
)
def update_dashboard(username, item_type):
return dashboard.create_dashboard(username, item_type)
refresh_btn.click(
fn=update_dashboard,
inputs=[username_input, type_selector],
outputs=[metrics_display, line_plot, bar_plot, table_output]
)
type_selector.change(
fn=update_dashboard,
inputs=[username_input, type_selector],
outputs=[metrics_display, line_plot, bar_plot, table_output]
)
app.load(
fn=update_dashboard,
inputs=[username_input, type_selector],
outputs=[metrics_display, line_plot, bar_plot, table_output]
)
return app
if __name__ == "__main__":
app = main()
app.launch()