File size: 13,752 Bytes
0127e19 6b01f84 3e86ec8 6b01f84 7f4750d 430f90b 09e1e0a 66db131 6b01f84 90a10f9 d577b0d b5f26dd d92692d 6b01f84 7d3f1d2 6b01f84 b5f26dd 6b01f84 51a04fc 6b01f84 51a04fc d92692d 8e93b9c 6b01f84 b5f26dd 6b01f84 d577b0d eafee69 6b01f84 d92692d 6b01f84 5d49f73 09e1e0a 6b01f84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import DuckDuckGoSearchTool,GoogleSearchTool, HfApiModel, PythonInterpreterTool, VisitWebpageTool, CodeAgent,Tool, LiteLLMModel
import hashlib
import json
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, TransformersEngine
import wikipedia
from tooling import WikipediaPageFetcher,MathModelQuerer, YoutubeTranscriptFetcher, CodeModelQuerer
from langchain_community.agent_toolkits.load_tools import load_tools
import time
import torch
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
cache = {}
class WebSearchTool(DuckDuckGoSearchTool):
name = "web_search_ddg"
description = "Search the web using DuckDuckGo"
web_search_ddf = WebSearchTool()
google_search = GoogleSearchTool(provider="serper")
python_interpreter = PythonInterpreterTool(authorized_imports = [
# standard library
'os', # For file path manipulation, checking existence, deletion
'glob', # Find files matching specific patterns
'pathlib', # Alternative for path manipulation
'sys',
'math',
'random',
'datetime',
'time',
'json',
'csv',
're',
'collections',
'itertools',
'functools',
'io',
'base64',
'hashlib',
'pathlib',
'glob',
# Third-Party Libraries (ensure they are installed in the execution env)
'pandas', # Data manipulation and analysis
'numpy', # Numerical operations
'scipy', # Scientific and technical computing (stats, optimize, etc.)
'sklearn', # Machine learning
])
visit_webpage_tool = VisitWebpageTool()
wiki_tool = WikipediaPageFetcher()
yt_transcript_fetcher = YoutubeTranscriptFetcher()
# math_model_querer = MathModelQuerer()
# code_model_querer = CodeModelQuerer()
# batch of tools fromm Langchain. Credits DataDiva88
lc_ddg_search = Tool.from_langchain(load_tools(["ddg-search"])[0])
lc_wikipedia = Tool.from_langchain(load_tools(["wikipedia"])[0])
lc_arxiv = Tool.from_langchain(load_tools(["arxiv"])[0])
lc_pubmed = Tool.from_langchain(load_tools(["pubmed"])[0])
lc_stackechange = Tool.from_langchain(load_tools(["stackexchange"])[0])
def load_cached_answer(question_id: str) -> str:
if question_id in cache.keys():
return cache[question_id]
else:
return None
def cache_answer(question_id: str, answer: str):
cache[question_id] = answer
# --- Model Setup ---
#MODEL_NAME = 'Qwen/Qwen2.5-3B-Instruct' # 'meta-llama/Llama-3.2-3B-Instruct'
# "Qwen/Qwen2.5-VL-3B-Instruct"#'meta-llama/Llama-2-7b-hf'#'meta-llama/Llama-3.1-8B-Instruct'#'TinyLlama/TinyLlama-1.1B-Chat-v1.0'#'mistralai/Mistral-7B-Instruct-v0.2'#'microsoft/DialoGPT-small'# 'EleutherAI/gpt-neo-2.7B'#'distilbert/distilgpt2'#'deepseek-ai/DeepSeek-R1-Distill-Qwen-7B'#'mistralai/Mistral-7B-Instruct-v0.2'
def load_model(model_name):
"""Download and load the model and tokenizer."""
try:
print(f"Loading model {MODEL_NAME}...")
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print(f"Model {MODEL_NAME} loaded successfully.")
transformers_engine = TransformersEngine(pipeline("text-generation", model=model, tokenizer=tokenizer))
return transformers_engine, model
except Exception as e:
print(f"Error loading model: {e}")
raise
# Load the model and tokenizer locally
# model, tokenizer = load_model()
#model_id = "meta-llama/Llama-3.1-8B-Instruct" # "microsoft/phi-2"# not working out of the box"google/gemma-2-2b-it" #toobig"Qwen/Qwen1.5-7B-Chat"#working but stupid: "meta-llama/Llama-3.2-3B-Instruct"
model = LiteLLMModel(model_id="anthropic/claude-3-5-sonnet-latest", temperature=0.2, max_tokens=512)
#from smolagents import TransformersModel
# model = TransformersModel(
# model_id=model_id,
# max_new_tokens=256)
# model = HfApiModel()
lc_ddg_search = Tool.from_langchain(load_tools(["ddg-search"])[0])
lc_wikipedia = Tool.from_langchain(load_tools(["wikipedia"])[0])
lc_arxiv = Tool.from_langchain(load_tools(["arxiv"])[0])
lc_pubmed = Tool.from_langchain(load_tools(["pubmed"])[0])
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
self.agent = CodeAgent(
model=model,
tools=[google_search,web_search_ddf, python_interpreter, visit_webpage_tool, wiki_tool,lc_wikipedia,lc_arxiv,lc_pubmed,lc_stackechange],
max_steps=10,
verbosity_level=1,
grammar=None,
planning_interval=3,
add_base_tools=True,
additional_authorized_imports=['requests', 'wikipedia', 'pandas','datetime']
)
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
answer = self.agent.run(question)
return answer
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
time.sleep(60)
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
cached = load_cached_answer(task_id)
if cached:
submitted_answer = cached
print(f"Loaded cached answer for task {task_id}")
else:
submitted_answer = agent(question_text)
cache_answer(task_id, submitted_answer)
print(f"Generated and cached answer for task {task_id}")
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-" * (60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|