Spaces:
Runtime error
Runtime error
File size: 10,078 Bytes
7b6c217 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
from flask import Flask, render_template, request, redirect, url_for, flash
from datetime import date, datetime
import os, json
import numpy as np
import pandas as pd
from wordcloud import WordCloud
from helper import predict_emotion,keyword, load_tflite_model
app = Flask(__name__)
@app.route('/')
@app.route('/dashboard')
def dashboard():
base_path = os.path.join('data')
dash_df = pd.read_excel(os.path.join(base_path, 'dataset_dash.xlsx'))
emosi_df = pd.read_excel(os.path.join(base_path, 'final_dataset.xlsx'))
# Info utama
total_keluhan = dash_df.shape[0]
topik_terbanyak = dash_df['Topik'].value_counts().idxmax()
instansi_terbanyak = dash_df['Instansi'].value_counts().idxmax()
# Proses tanggal
dash_df['tanggal_keluhan'] = pd.to_datetime(dash_df['tanggal_keluhan']).dt.normalize()
today = pd.to_datetime(datetime.today().date())
keluhan_hari_ini = dash_df[dash_df['tanggal_keluhan'] == today].shape[0]
# Data keluhan harian (last 7 days)
start_date = today - pd.Timedelta(days=6)
last_7_days_df = dash_df[(dash_df['tanggal_keluhan'] >= start_date) & (dash_df['tanggal_keluhan'] <= today)].copy()
last_7_days_df['nama_hari'] = last_7_days_df['tanggal_keluhan'].dt.day_name()
hari_en_to_id = {
'Monday': 'Senin',
'Tuesday': 'Selasa',
'Wednesday': 'Rabu',
'Thursday': 'Kamis',
'Friday': 'Jumat',
'Saturday': 'Sabtu',
'Sunday': 'Minggu'
}
last_7_days_df['nama_hari'] = last_7_days_df['nama_hari'].map(hari_en_to_id)
hari_urut = ['Senin', 'Selasa', 'Rabu', 'Kamis', 'Jumat', 'Sabtu', 'Minggu']
keluhan_per_hari = last_7_days_df.groupby('nama_hari').size().reindex(hari_urut, fill_value=0)
keluhan_harian_labels = keluhan_per_hari.index.tolist()
keluhan_harian_values = keluhan_per_hari.values.tolist()
# Data emosi
emosi_dist = emosi_df['emosi'].value_counts()
emosi_values = emosi_dist.values.tolist()
# Data keluhan bulanan dengan sorting berdasarkan tanggal
# Buat kolom untuk menampung data bulanan dan kelompokkan berdasarkan bulan dan tahun
dash_df['year'] = dash_df['tanggal_keluhan'].dt.year
dash_df['month'] = dash_df['tanggal_keluhan'].dt.month
# Kelompokkan berdasarkan bulan dan tahun
keluhan_bulanan = dash_df.groupby(['year', 'month']).size().reset_index()
keluhan_bulanan.columns = ['year', 'month', 'count']
# Urutkan berdasarkan tahun dan bulan
keluhan_bulanan = keluhan_bulanan.sort_values(['year', 'month'])
# Format label bulan-tahun untuk tampilan
import calendar
keluhan_bulanan['bulan_nama'] = keluhan_bulanan.apply(
lambda row: f"{calendar.month_abbr[row['month']]} {row['year']}",
axis=1
)
keluhan_bulanan_labels = keluhan_bulanan['bulan_nama'].tolist()
keluhan_bulanan_values = keluhan_bulanan['count'].tolist()
# ----- Top 5 Topik & Instansi ---------------------------------------
top_topik = dash_df['Topik'].value_counts().head(5).reset_index()
top_topik.columns = ['Topik', 'Jumlah']
top_instansi = dash_df['Instansi'].value_counts().head(5).reset_index()
top_instansi.columns = ['Instansi', 'Jumlah']
# ----- Word-cloud ----------------------------------------------------
text_wc = ' '.join(dash_df['keluhan'].dropna().astype(str))
wc_img = WordCloud(width=800, height=400, background_color="white").generate(text_wc)
wc_path = os.path.join('static', 'wordcloud.png')
os.makedirs(os.path.dirname(wc_path), exist_ok=True)
wc_img.to_file(wc_path) # simpan β static/wordcloud.png
return render_template(
'dashboard.html',
total_keluhan=total_keluhan,
topik_terbanyak=topik_terbanyak,
instansi_terbanyak=instansi_terbanyak,
keluhan_hari_ini=keluhan_hari_ini,
keluhan_harian_labels=keluhan_harian_labels,
keluhan_harian_values=keluhan_harian_values,
emosi_labels=emosi_dist.index.tolist(),
emosi_values=emosi_values,
keluhan_bulanan_labels=keluhan_bulanan_labels,
keluhan_bulanan_values=keluhan_bulanan_values,
wordcloud_image='wordcloud.png',
top_topik = top_topik.itertuples(index=False),
top_instansi = top_instansi.itertuples(index=False),
)
@app.route('/ubah_status', methods=['POST'])
def ubah_status():
keluhan_id = int(request.form['id'])
base_path = os.path.join('data')
file_path = os.path.join(base_path, 'vikor_fix.xlsx')
df = pd.read_excel(file_path)
# Update status menjadi 'selesai'
df.loc[df['id'] == keluhan_id, 'status'] = 'selesai'
# Simpan kembali
df.to_excel(file_path, index=False)
return redirect(url_for('leaderboard'))
@app.route('/leaderboard')
def leaderboard():
base_path = os.path.join('data')
final_df = pd.read_excel(os.path.join(base_path, 'vikor_fix.xlsx'))
# Filter hanya data yang belum selesai
df_pending = final_df[final_df['status'] != 'selesai']
# ----- Hitung VIKOR -----
f_emosi_plus = df_pending['new_emosi'].max()
f_emosi_min = df_pending['new_emosi'].min()
f_ranking_plus= df_pending['new_keyword'].max()
f_ranking_min = df_pending['new_keyword'].min()
emosi_denom = f_emosi_plus - f_emosi_min
ranking_denom = f_ranking_plus - f_ranking_min
df_pending['normalisasi_emosi'] = (f_emosi_plus - df_pending['new_emosi']) / (emosi_denom if emosi_denom != 0 else 1)
df_pending['normalisasi_ranking'] = (f_ranking_plus - df_pending['new_keyword']) / (ranking_denom if ranking_denom != 0 else 1)
df_pending['normalisasi_bobot_emosi'] = 0.5 * df_pending['normalisasi_emosi']
df_pending['normalisasi_bobot_ranking'] = 0.5 * df_pending['normalisasi_ranking']
df_pending['ultility'] = df_pending['normalisasi_bobot_emosi'] + df_pending['normalisasi_bobot_ranking']
df_pending['regret'] = df_pending[['normalisasi_bobot_emosi', 'normalisasi_bobot_ranking']].max(axis=1)
s_plus = df_pending['ultility'].max()
s_min = df_pending['ultility'].min()
r_plus = df_pending['regret'].max()
r_min = df_pending['regret'].min()
df_pending['vikor'] = 0.5 * ((df_pending['ultility'] - s_min) / (s_plus - s_min)) + \
0.5 * ((df_pending['regret'] - r_min) / (r_plus - r_min))
df_pending['rank'] = df_pending['vikor'].rank(ascending=True).astype(int)
# ----- Keluhan prioritas (10 skor vikor tertinggi) -------------------
prioritas_df = df_pending.sort_values(by='vikor', ascending=True).head(10)
# ----- Render ke template -------------------------------------------
return render_template(
'leaderboard.html',
keluhan_prioritas = prioritas_df
)
@app.route('/form', methods=['GET', 'POST'])
def form():
# Load dataframes
base_path = os.path.join('data')
instansi_df = pd.read_csv(os.path.join(base_path, 'mediacenter_instansi_202311220929.csv'), sep=';')
kecamatan_df = pd.read_csv(os.path.join(base_path, 'mediacenter_kecamatan_202311220929.csv'), sep=';')
kelurahan_df = pd.read_csv(os.path.join(base_path, 'mediacenter_kelurahan_202311220929.csv'), sep=';')
topik_df = pd.read_csv(os.path.join(base_path, 'mediacenter_topik_202311230834.csv'), sep=';')
# Join antar dataframe agar dapatkan nama kecamatan pada kelurahan
kecamatan_dict = kecamatan_df.set_index('id')['name'].to_dict()
kelurahan_df['kecamatan_name'] = kelurahan_df['kecamatan_id'].map(kecamatan_dict)
# Buat mapping: kecamatan_name -> list of kelurahan names
kelurahan_map = kelurahan_df.groupby('kecamatan_name')['name'].apply(list).to_dict()
message = None
if request.method == 'POST':
# Form
keluhan = request.form.get('keluhan')
instansi = request.form.get('instansi')
tanggal_keluhan = request.form.get('tanggal_keluhan')
kecamatan = request.form.get('kecamatan')
kelurahan = request.form.get('kelurahan')
topik = request.form.get('topik')
# Prediksi emosi dan ekstrak keyword
interpreter = load_tflite_model()
emosi = predict_emotion(keluhan, interpreter)
keywords, ranked_keywords = keyword(keluhan)
keywords_str = ', '.join(keywords)
emotion_mapping = {
'anger': 3,
'fear': 2,
'sadness': 1
}
new_emosi = emotion_mapping.get(emosi, emosi)
# Buat dictionary data baru
new_data = {
'keluhan': keluhan,
'instansi': instansi,
'tanggal_keluhan': tanggal_keluhan,
'kecamatan': kecamatan,
'kelurahan': kelurahan,
'topik': topik,
'emosi': emosi,
'new_emosi': new_emosi,
'new_keyword': ranked_keywords,
'keywords': keywords_str,
'status': 'belum_selesai'
}
# Simpan ke final_dataset.xlsx
# Cek apakah file sudah ada, jika tidak buat baru
dataset_path = os.path.join('data', 'vikor_fix.xlsx')
if not os.path.exists(dataset_path):
df = pd.DataFrame([new_data])
else:
df = pd.read_excel(dataset_path)
df = pd.concat([df, pd.DataFrame([new_data])], ignore_index=True)
df.to_excel(dataset_path, index=False)
message = "β
Keluhan berhasil disimpan!"
# Pass dataframes to the template
return render_template('form.html', instansi=instansi_df,
kecamatan=kecamatan_df, kelurahan=kelurahan_df,
topik=topik_df, kelurahan_map=json.dumps(kelurahan_map), message=message)
if __name__ == "__main__":
port = int(os.environ.get('PORT', 5000))
app.run(host="0.0.0.0", port=port, debug=True) # debug=True opsional |