Spaces:
Runtime error
Runtime error
import torch | |
import os | |
import einops | |
from latent_preview import Latent2RGBPreviewer | |
import numpy as np | |
def clean_prompt_cond_caches(): | |
conditions = {} | |
conditions["+"] = {} | |
conditions["-"] = {} | |
conditions["switch"] = {} | |
conditions["+"]["text"] = None | |
conditions["+"]["cache"] = None | |
conditions["-"]["text"] = None | |
conditions["-"]["cache"] = None | |
conditions["switch"]["text"] = None | |
conditions["switch"]["cache"] = None | |
return conditions | |
def set_timestep_range(conditioning, start, end): | |
c = [] | |
for t in conditioning: | |
n = [t[0], t[1].copy()] | |
if "pooled_output" in n[1]: | |
n[1]["start_percent"] = start | |
n[1]["end_percent"] = end | |
c.append(n) | |
return c | |
def get_previewer(device, latent_format): | |
previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors) | |
def preview_function(x0, step, total_steps): | |
return previewer.decode_latent_to_preview(x0) | |
previewer.preview = preview_function | |
return previewer | |