File size: 10,053 Bytes
26539b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "d1e79cc0",
   "metadata": {},
   "outputs": [],
   "source": [
    "\"\"\"LangGraph Agent\"\"\"\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "from langgraph.graph import START, StateGraph, MessagesState\n",
    "from langgraph.prebuilt import tools_condition\n",
    "from langgraph.prebuilt import ToolNode\n",
    "from langchain_google_genai import ChatGoogleGenerativeAI\n",
    "from langchain_groq import ChatGroq\n",
    "from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings\n",
    "from langchain_community.tools.tavily_search import TavilySearchResults\n",
    "from langchain_community.document_loaders import WikipediaLoader\n",
    "from langchain_community.document_loaders import ArxivLoader\n",
    "from langchain_community.vectorstores import SupabaseVectorStore\n",
    "from langchain_core.messages import SystemMessage, HumanMessage\n",
    "from langchain_core.tools import tool\n",
    "from langchain.tools.retriever import create_retriever_tool\n",
    "from supabase.client import Client, create_client\n",
    "\n",
    "load_dotenv()\n",
    "\n",
    "@tool\n",
    "def multiply(a: int, b: int) -> int:\n",
    "    \"\"\"Multiply two numbers.\n",
    "    Args:\n",
    "        a: first int\n",
    "        b: second int\n",
    "    \"\"\"\n",
    "    return a * b\n",
    "\n",
    "@tool\n",
    "def add(a: int, b: int) -> int:\n",
    "    \"\"\"Add two numbers.\n",
    "    \n",
    "    Args:\n",
    "        a: first int\n",
    "        b: second int\n",
    "    \"\"\"\n",
    "    return a + b\n",
    "\n",
    "@tool\n",
    "def subtract(a: int, b: int) -> int:\n",
    "    \"\"\"Subtract two numbers.\n",
    "    \n",
    "    Args:\n",
    "        a: first int\n",
    "        b: second int\n",
    "    \"\"\"\n",
    "    return a - b\n",
    "\n",
    "@tool\n",
    "def divide(a: int, b: int) -> int:\n",
    "    \"\"\"Divide two numbers.\n",
    "    \n",
    "    Args:\n",
    "        a: first int\n",
    "        b: second int\n",
    "    \"\"\"\n",
    "    if b == 0:\n",
    "        raise ValueError(\"Cannot divide by zero.\")\n",
    "    return a / b\n",
    "\n",
    "@tool\n",
    "def modulus(a: int, b: int) -> int:\n",
    "    \"\"\"Get the modulus of two numbers.\n",
    "    \n",
    "    Args:\n",
    "        a: first int\n",
    "        b: second int\n",
    "    \"\"\"\n",
    "    return a % b\n",
    "\n",
    "@tool\n",
    "def wiki_search(query: str) -> str:\n",
    "    \"\"\"Search Wikipedia for a query and return maximum 2 results.\n",
    "    \n",
    "    Args:\n",
    "        query: The search query.\"\"\"\n",
    "    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()\n",
    "    formatted_search_docs = \"\\n\\n---\\n\\n\".join(\n",
    "        [\n",
    "            f'<Document source=\"{doc.metadata[\"source\"]}\" page=\"{doc.metadata.get(\"page\", \"\")}\"/>\\n{doc.page_content}\\n</Document>'\n",
    "            for doc in search_docs\n",
    "        ])\n",
    "    return {\"wiki_results\": formatted_search_docs}\n",
    "\n",
    "@tool\n",
    "def web_search(query: str) -> str:\n",
    "    \"\"\"Search Tavily for a query and return maximum 3 results.\n",
    "    \n",
    "    Args:\n",
    "        query: The search query.\"\"\"\n",
    "    search_docs = TavilySearchResults(max_results=3).invoke(query=query)\n",
    "    formatted_search_docs = \"\\n\\n---\\n\\n\".join(\n",
    "        [\n",
    "            f'<Document source=\"{doc.metadata[\"source\"]}\" page=\"{doc.metadata.get(\"page\", \"\")}\"/>\\n{doc.page_content}\\n</Document>'\n",
    "            for doc in search_docs\n",
    "        ])\n",
    "    return {\"web_results\": formatted_search_docs}\n",
    "\n",
    "@tool\n",
    "def arvix_search(query: str) -> str:\n",
    "    \"\"\"Search Arxiv for a query and return maximum 3 result.\n",
    "    \n",
    "    Args:\n",
    "        query: The search query.\"\"\"\n",
    "    search_docs = ArxivLoader(query=query, load_max_docs=3).load()\n",
    "    formatted_search_docs = \"\\n\\n---\\n\\n\".join(\n",
    "        [\n",
    "            f'<Document source=\"{doc.metadata[\"source\"]}\" page=\"{doc.metadata.get(\"page\", \"\")}\"/>\\n{doc.page_content[:1000]}\\n</Document>'\n",
    "            for doc in search_docs\n",
    "        ])\n",
    "    return {\"arvix_results\": formatted_search_docs}\n",
    "\n",
    "\n",
    "\n",
    "# load the system prompt from the file\n",
    "with open(\"system_prompt.txt\", \"r\", encoding=\"utf-8\") as f:\n",
    "    system_prompt = f.read()\n",
    "\n",
    "# System message\n",
    "sys_msg = SystemMessage(content=system_prompt)\n",
    "\n",
    "# build a retriever\n",
    "embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-mpnet-base-v2\") #  dim=768\n",
    "supabase_url = \"https://ajnakgegqblhwltzkzbz.supabase.co\"\n",
    "supabase_key = \"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImFqbmFrZ2VncWJsaHdsdHpremJ6Iiwicm9sZSI6ImFub24iLCJpYXQiOjE3NDkyMDgxODgsImV4cCI6MjA2NDc4NDE4OH0.b9RPF-5otedg4yiaQu_uhOgYpXVXd9D_0oR-9cluUjo\"\n",
    "\n",
    "supabase: Client = create_client(supabase_url, supabase_key)\n",
    "vector_store = SupabaseVectorStore(\n",
    "    client=supabase,\n",
    "    embedding= embeddings,\n",
    "    table_name=\"documents\",\n",
    "    query_name=\"match_documents_langchain\",\n",
    ")\n",
    "create_retriever_tool = create_retriever_tool(\n",
    "    retriever=vector_store.as_retriever(),\n",
    "    name=\"Question Search\",\n",
    "    description=\"A tool to retrieve similar questions from a vector store.\",\n",
    ")\n",
    "\n",
    "\n",
    "\n",
    "tools = [\n",
    "    multiply,\n",
    "    add,\n",
    "    subtract,\n",
    "    divide,\n",
    "    modulus,\n",
    "    wiki_search,\n",
    "    web_search,\n",
    "    arvix_search,\n",
    "]\n",
    "\n",
    "# Build graph function\n",
    "def build_graph(provider: str = \"google\"):\n",
    "    \"\"\"Build the graph\"\"\"\n",
    "    # Load environment variables from .env file\n",
    "    if provider == \"google\":\n",
    "        # Google Gemini\n",
    "        llm = ChatGoogleGenerativeAI(model=\"gemini-2.0-flash\", temperature=0)\n",
    "    elif provider == \"groq\":\n",
    "        # Groq https://console.groq.com/docs/models\n",
    "        llm = ChatGroq(model=\"qwen-qwq-32b\",api_key=\"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\", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it\n",
    "    elif provider == \"huggingface\":\n",
    "        # TODO: Add huggingface endpoint\n",
    "        llm = ChatHuggingFace(\n",
    "            llm=HuggingFaceEndpoint(\n",
    "                url=\"https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf\",\n",
    "                temperature=0,\n",
    "            ),\n",
    "        )\n",
    "    else:\n",
    "        raise ValueError(\"Invalid provider. Choose 'google', 'groq' or 'huggingface'.\")\n",
    "    # Bind tools to LLM\n",
    "    llm_with_tools = llm.bind_tools(tools)\n",
    "\n",
    "    # Node\n",
    "    def assistant(state: MessagesState):\n",
    "        \"\"\"Assistant node\"\"\"\n",
    "        return {\"messages\": [llm_with_tools.invoke(state[\"messages\"])]}\n",
    "    \n",
    "    # def retriever(state: MessagesState):\n",
    "      #  \"\"\"Retriever node\"\"\"\n",
    "       # similar_question = vector_store.similarity_search(state[\"messages\"][0].content)\n",
    "        #example_msg = HumanMessage(\n",
    "         #   content=f\"Here I provide a similar question and answer for reference: \\n\\n{similar_question[0].page_content}\",\n",
    "       # )\n",
    "       # return {\"messages\": [sys_msg] + state[\"messages\"] + [example_msg]}\n",
    "\n",
    "    from langchain_core.messages import AIMessage\n",
    "\n",
    "    def retriever(state: MessagesState):\n",
    "        query = state[\"messages\"][-1].content\n",
    "        similar_doc = vector_store.similarity_search(query, k=1)[0]\n",
    "\n",
    "        content = similar_doc.page_content\n",
    "        if \"Final answer :\" in content:\n",
    "            answer = content.split(\"Final answer :\")[-1].strip()\n",
    "        else:\n",
    "            answer = content.strip()\n",
    "\n",
    "        return {\"messages\": [AIMessage(content=answer)]}\n",
    "\n",
    "   # builder = StateGraph(MessagesState)\n",
    "    #builder.add_node(\"retriever\", retriever)\n",
    "    #builder.add_node(\"assistant\", assistant)\n",
    "    #builder.add_node(\"tools\", ToolNode(tools))\n",
    "    #builder.add_edge(START, \"retriever\")\n",
    "    #builder.add_edge(\"retriever\", \"assistant\")\n",
    "    #builder.add_conditional_edges(\n",
    "     #   \"assistant\",\n",
    "      #  tools_condition,\n",
    "    #)\n",
    "    #builder.add_edge(\"tools\", \"assistant\")\n",
    "\n",
    "    builder = StateGraph(MessagesState)\n",
    "    builder.add_node(\"retriever\", retriever)\n",
    "\n",
    "    # Retriever ist Start und Endpunkt\n",
    "    builder.set_entry_point(\"retriever\")\n",
    "    builder.set_finish_point(\"retriever\")\n",
    "\n",
    "    # Compile graph\n",
    "    return builder.compile()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "abc55916",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}