File size: 10,742 Bytes
d14dccf
26539b0
1551d5f
26539b0
 
 
 
 
 
 
 
d14dccf
26539b0
 
 
 
 
 
 
d14dccf
26539b0
 
 
 
d14dccf
26539b0
 
 
 
d14dccf
26539b0
 
 
 
d14dccf
26539b0
 
 
 
 
 
d14dccf
26539b0
 
 
 
d14dccf
1551d5f
 
d14dccf
 
 
 
 
 
 
 
1551d5f
d14dccf
26539b0
 
 
d14dccf
1551d5f
 
d14dccf
1551d5f
d14dccf
 
 
 
 
 
 
 
 
1551d5f
d14dccf
26539b0
 
d14dccf
 
1551d5f
 
d14dccf
 
 
 
 
 
 
 
1551d5f
d14dccf
26539b0
d14dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1551d5f
 
 
 
 
26539b0
 
 
d14dccf
26539b0
 
 
1551d5f
d14dccf
1551d5f
d14dccf
 
26539b0
 
 
 
 
 
 
 
 
d14dccf
26539b0
 
1249025
d14dccf
1b2b2d6
d14dccf
 
 
 
 
26539b0
d14dccf
26539b0
 
3429b66
1551d5f
3429b66
1551d5f
d14dccf
3429b66
d14dccf
3429b66
1551d5f
3429b66
d14dccf
3429b66
 
 
 
 
d14dccf
3429b66
 
 
d14dccf
3429b66
 
 
 
 
 
 
 
 
 
 
 
 
 
d14dccf
3429b66
d14dccf
3429b66
 
d14dccf
1551d5f
3429b66
26539b0
d14dccf
26539b0
 
 
 
d14dccf
 
26539b0
3429b66
 
 
d14dccf
 
 
 
 
 
 
 
 
 
 
 
3429b66
 
d14dccf
3429b66
 
d14dccf
3429b66
d14dccf
 
 
 
 
 
 
 
 
 
 
 
 
3429b66
 
 
 
 
 
 
 
 
d14dccf
 
 
 
 
 
3429b66
d14dccf
 
 
 
feaf702
d14dccf
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
"""LangGraph Agent - Complete bypass of problematic vector store"""
import os
import json
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_groq import ChatGroq
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from supabase.client import Client, create_client

load_dotenv()

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers."""
    return a - b

@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers."""
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results."""
    try:
        search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
        formatted_docs = []
        for doc in search_docs:
            source = "Wikipedia"
            if hasattr(doc, 'metadata') and isinstance(doc.metadata, dict):
                source = doc.metadata.get('source', 'Wikipedia')
            formatted_docs.append(f"Source: {source}\n{doc.page_content[:1000]}...")
        
        return "\n\n---\n\n".join(formatted_docs)
    except Exception as e:
        return f"Error searching Wikipedia: {str(e)}"

@tool
def web_search(query: str) -> str:
    """Search the web using Tavily."""
    try:
        search_tool = TavilySearchResults(max_results=3)
        results = search_tool.invoke(query)
        
        if isinstance(results, list):
            formatted_results = []
            for result in results:
                if isinstance(result, dict):
                    url = result.get('url', 'Unknown')
                    content = result.get('content', '')[:1000]
                    formatted_results.append(f"Source: {url}\n{content}...")
            return "\n\n---\n\n".join(formatted_results)
        return str(results)
    except Exception as e:
        return f"Error searching web: {str(e)}"

@tool
def arxiv_search(query: str) -> str:
    """Search Arxiv for academic papers."""
    try:
        search_docs = ArxivLoader(query=query, load_max_docs=3).load()
        formatted_docs = []
        for doc in search_docs:
            source = "ArXiv"
            if hasattr(doc, 'metadata') and isinstance(doc.metadata, dict):
                source = doc.metadata.get('source', 'ArXiv')
            formatted_docs.append(f"Source: {source}\n{doc.page_content[:1000]}...")
        
        return "\n\n---\n\n".join(formatted_docs)
    except Exception as e:
        return f"Error searching ArXiv: {str(e)}"

# Raw Supabase search function that bypasses LangChain entirely
def raw_supabase_search(query: str, supabase_client):
    """Direct Supabase search without any LangChain components"""
    try:
        # Simple text-based search using Supabase's built-in functions
        # This assumes you have a simple text search function in your database
        result = supabase_client.table('documents').select('content').text_search('content', query).limit(1).execute()
        
        if result.data:
            return result.data[0]['content']
        else:
            # Fallback: get any document (for testing)
            result = supabase_client.table('documents').select('content').limit(1).execute()
            if result.data:
                return result.data[0]['content']
            return "No documents found in database"
            
    except Exception as e:
        return f"Database search error: {str(e)}"

# Alternative: Use simple SQL query
def simple_sql_search(query: str, supabase_client):
    """Simple SQL-based search"""
    try:
        # Use a simple SQL query to avoid metadata issues
        sql_query = f"""
        SELECT content 
        FROM documents 
        WHERE content ILIKE '%{query}%' 
        LIMIT 1
        """
        result = supabase_client.rpc('execute_sql', {'query': sql_query}).execute()
        
        if result.data:
            return result.data[0]['content']
        return "No matching documents found"
        
    except Exception as e:
        return f"SQL search error: {str(e)}"

# Load system prompt
try:
    with open("system_prompt.txt", "r", encoding="utf-8") as f:
        system_prompt = f.read()
except FileNotFoundError:
    system_prompt = "You are a helpful AI assistant."

sys_msg = SystemMessage(content=system_prompt)

# Initialize Supabase without vector store
supabase_url = "https://ajnakgegqblhwltzkzbz.supabase.co"
supabase_key = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImFqbmFrZ2VncWJsaHdsdHpremJ6Iiwicm9sZSI6ImFub24iLCJpYXQiOjE3NDkyMDgxODgsImV4cCI6MjA2NDc4NDE4OH0.b9RPF-5otedg4yiaQu_uhOgYpXVXd9D_0oR-9cluUjo"

try:
    supabase_client = create_client(supabase_url, supabase_key)
except Exception as e:
    print(f"Warning: Could not initialize Supabase client: {e}")
    supabase_client = None

tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arxiv_search,
]

def build_graph(provider: str = "groq"):
    """Build the graph without problematic vector store operations"""
    if provider == "groq":
        llm = ChatGroq(
            model="qwen-qwq-32b",
            api_key="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", 
            temperature=0
        )
    else:
        raise ValueError("Invalid provider. Choose 'groq'.")
    
    def retriever(state: MessagesState):
        """Retriever that actually searches based on query"""
        try:
            query = state["messages"][-1].content.lower()
            
            if supabase_client is None:
                return {"messages": [AIMessage(content="I don't have access to my knowledge base right now. Let me help you using my general knowledge or search tools instead. What would you like to know?")]}
            
            print(f"Searching for: {query}")  # Debug print
            
            # Try text-based search in the content
            try:
                # Search for documents containing query terms
                result = supabase_client.table('documents').select('content')\
                    .ilike('content', f'%{query}%')\
                    .limit(3).execute()
                
                if result.data and len(result.data) > 0:
                    print(f"Found {len(result.data)} results")  # Debug print
                    
                    # Get the most relevant result
                    content = result.data[0].get('content', '')
                    
                    # Look for final answer pattern
                    if "Final answer :" in content:
                        answer = content.split("Final answer :")[-1].strip()
                    else:
                        # Take relevant portion
                        answer = content.strip()[:800]
                        if len(content) > 800:
                            answer += "..."
                    
                    return {"messages": [AIMessage(content=answer)]}
                else:
                    print("No matching documents found")  # Debug print
                    
            except Exception as e:
                print(f"Text search failed: {e}")
            
            # Fallback: Instead of returning same document, provide helpful response
            return {"messages": [AIMessage(content=f"I couldn't find specific information about '{query}' in my knowledge base. Let me try to help you with my general knowledge, or would you like me to search the web for current information?")]}
                
        except Exception as e:
            return {"messages": [AIMessage(content=f"I'm having trouble accessing my knowledge base right now. How can I help you using web search or my general knowledge instead?")]}

    # Build simple graph
    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.set_entry_point("retriever")
    builder.set_finish_point("retriever")
    
    return builder.compile()

# RECOMMENDED: Use this function instead of build_graph()
def build_working_graph(provider: str = "groq"):
    """Build a fully functional graph that actually works for different questions"""
    if provider == "groq":
        llm = ChatGroq(
            model="qwen-qwq-32b",
            api_key="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", 
            temperature=0
        )
    else:
        raise ValueError("Invalid provider.")
    
    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        """Assistant that can provide different answers for different questions"""
        # Add system message to the conversation
        messages = [sys_msg] + state["messages"]
        response = llm_with_tools.invoke(messages)
        return {"messages": [response]}

    # Build the graph
    builder = StateGraph(MessagesState)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    
    builder.set_entry_point("assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")
    
    return builder.compile()

# Test function
def test_graph():
    """Test the graph builds successfully"""
    print("Building working graph (recommended)...")
    try:
        graph = build_working_graph()
        print("βœ“ Working graph built successfully!")
        return graph
    except Exception as e:
        print(f"βœ— Working graph failed: {e}")
        
    print("Testing retriever-based graph...")
    try:
        graph1 = build_graph()
        print("βœ“ Retriever graph built successfully!")
        return graph1
    except Exception as e:
        print(f"βœ— Retriever graph failed: {e}")
        return None

if __name__ == "__main__":
    question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    
    graph = test_graph()
    
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages})
    for m in messages["messages"]:
        m.pretty_print()