Spaces:
Sleeping
Sleeping
Add initial implementation of AnalysisGNN Gradio app with model integration and requirements
Browse files- .gitignore +215 -0
- README.md +91 -3
- app.py +488 -0
- checkpoint/model.ckpt +3 -0
- requirements.txt +38 -0
.gitignore
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[codz]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py.cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# UV
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
#uv.lock
|
| 102 |
+
|
| 103 |
+
# poetry
|
| 104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 106 |
+
# commonly ignored for libraries.
|
| 107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 108 |
+
#poetry.lock
|
| 109 |
+
#poetry.toml
|
| 110 |
+
|
| 111 |
+
# pdm
|
| 112 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 113 |
+
# pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
|
| 114 |
+
# https://pdm-project.org/en/latest/usage/project/#working-with-version-control
|
| 115 |
+
#pdm.lock
|
| 116 |
+
#pdm.toml
|
| 117 |
+
.pdm-python
|
| 118 |
+
.pdm-build/
|
| 119 |
+
|
| 120 |
+
# pixi
|
| 121 |
+
# Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
|
| 122 |
+
#pixi.lock
|
| 123 |
+
# Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
|
| 124 |
+
# in the .venv directory. It is recommended not to include this directory in version control.
|
| 125 |
+
.pixi
|
| 126 |
+
|
| 127 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 128 |
+
__pypackages__/
|
| 129 |
+
|
| 130 |
+
# Celery stuff
|
| 131 |
+
celerybeat-schedule
|
| 132 |
+
celerybeat.pid
|
| 133 |
+
|
| 134 |
+
# SageMath parsed files
|
| 135 |
+
*.sage.py
|
| 136 |
+
|
| 137 |
+
# Environments
|
| 138 |
+
.env
|
| 139 |
+
.envrc
|
| 140 |
+
.venv
|
| 141 |
+
env/
|
| 142 |
+
venv/
|
| 143 |
+
ENV/
|
| 144 |
+
env.bak/
|
| 145 |
+
venv.bak/
|
| 146 |
+
|
| 147 |
+
# Spyder project settings
|
| 148 |
+
.spyderproject
|
| 149 |
+
.spyproject
|
| 150 |
+
|
| 151 |
+
# Rope project settings
|
| 152 |
+
.ropeproject
|
| 153 |
+
|
| 154 |
+
# mkdocs documentation
|
| 155 |
+
/site
|
| 156 |
+
|
| 157 |
+
# mypy
|
| 158 |
+
.mypy_cache/
|
| 159 |
+
.dmypy.json
|
| 160 |
+
dmypy.json
|
| 161 |
+
|
| 162 |
+
# Pyre type checker
|
| 163 |
+
.pyre/
|
| 164 |
+
|
| 165 |
+
# pytype static type analyzer
|
| 166 |
+
.pytype/
|
| 167 |
+
|
| 168 |
+
# Cython debug symbols
|
| 169 |
+
cython_debug/
|
| 170 |
+
|
| 171 |
+
# PyCharm
|
| 172 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 173 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 174 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 175 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 176 |
+
#.idea/
|
| 177 |
+
|
| 178 |
+
# Abstra
|
| 179 |
+
# Abstra is an AI-powered process automation framework.
|
| 180 |
+
# Ignore directories containing user credentials, local state, and settings.
|
| 181 |
+
# Learn more at https://abstra.io/docs
|
| 182 |
+
.abstra/
|
| 183 |
+
|
| 184 |
+
# Visual Studio Code
|
| 185 |
+
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
|
| 186 |
+
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
|
| 187 |
+
# and can be added to the global gitignore or merged into this file. However, if you prefer,
|
| 188 |
+
# you could uncomment the following to ignore the entire vscode folder
|
| 189 |
+
# .vscode/
|
| 190 |
+
|
| 191 |
+
# Ruff stuff:
|
| 192 |
+
.ruff_cache/
|
| 193 |
+
|
| 194 |
+
# PyPI configuration file
|
| 195 |
+
.pypirc
|
| 196 |
+
|
| 197 |
+
# Cursor
|
| 198 |
+
# Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
|
| 199 |
+
# exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
|
| 200 |
+
# refer to https://docs.cursor.com/context/ignore-files
|
| 201 |
+
.cursorignore
|
| 202 |
+
.cursorindexingignore
|
| 203 |
+
|
| 204 |
+
# Marimo
|
| 205 |
+
marimo/_static/
|
| 206 |
+
marimo/_lsp/
|
| 207 |
+
__marimo__/
|
| 208 |
+
|
| 209 |
+
# AnalysisGNN artifacts
|
| 210 |
+
artifacts/
|
| 211 |
+
outputs/
|
| 212 |
+
|
| 213 |
+
# Gradio cache
|
| 214 |
+
gradio_cached_examples/
|
| 215 |
+
flagged/
|
README.md
CHANGED
|
@@ -1,13 +1,101 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.49.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
short_description: Inference for the AnalysisGNN score analysis model
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: AnalysisGNN Music Analysis
|
| 3 |
+
emoji: šµ
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.49.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
short_description: Inference for the AnalysisGNN score analysis model
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# AnalysisGNN Gradio Interface
|
| 15 |
+
|
| 16 |
+
A Gradio web interface for [AnalysisGNN](https://github.com/manoskary/analysisGNN), a unified music analysis model using Graph Neural Networks.
|
| 17 |
+
|
| 18 |
+
## Features
|
| 19 |
+
|
| 20 |
+
- š¼ **MusicXML Upload**: Upload and analyze musical scores in MusicXML format
|
| 21 |
+
- šØ **Score Visualization**: Automatic rendering of uploaded scores to images
|
| 22 |
+
- š **Multi-task Analysis**: Perform various music analysis tasks:
|
| 23 |
+
- Cadence Detection
|
| 24 |
+
- Key Analysis (Local & Tonalized)
|
| 25 |
+
- Harmonic Analysis (Chord Quality, Root, Bass, Inversion)
|
| 26 |
+
- Roman Numeral Analysis
|
| 27 |
+
- Phrase & Section Segmentation
|
| 28 |
+
- š **Results Table**: View analysis results in an interactive table
|
| 29 |
+
- š¾ **Export Results**: Download analysis results as CSV
|
| 30 |
+
|
| 31 |
+
## Quick Start
|
| 32 |
+
|
| 33 |
+
### Local Installation
|
| 34 |
+
|
| 35 |
+
```bash
|
| 36 |
+
# Clone the repository
|
| 37 |
+
git clone https://github.com/manoskary/analysisgnn-gradio.git
|
| 38 |
+
cd analysisgnn-gradio
|
| 39 |
+
|
| 40 |
+
# Create a virtual environment (recommended)
|
| 41 |
+
python -m venv venv
|
| 42 |
+
source venv/bin/activate # On Windows: venv\Scripts\activate
|
| 43 |
+
|
| 44 |
+
# Install dependencies
|
| 45 |
+
pip install -r requirements.txt
|
| 46 |
+
|
| 47 |
+
# Run the app
|
| 48 |
+
python app.py
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
The app will be available at `http://localhost:7860`
|
| 52 |
+
|
| 53 |
+
### Hugging Face Spaces
|
| 54 |
+
|
| 55 |
+
This app is designed to run on Hugging Face Spaces. Simply deploy it as a Gradio Space.
|
| 56 |
+
|
| 57 |
+
## Usage
|
| 58 |
+
|
| 59 |
+
1. **Upload a MusicXML file** using the file upload button
|
| 60 |
+
2. **Select analysis tasks** you want to perform (cadence, key, harmony, etc.)
|
| 61 |
+
3. **Click "Analyze Score"** to run the inference
|
| 62 |
+
4. **View results**:
|
| 63 |
+
- Score visualization (rendered image)
|
| 64 |
+
- Analysis results table (note-level predictions)
|
| 65 |
+
5. **Download results** as CSV if needed
|
| 66 |
+
|
| 67 |
+
## Model
|
| 68 |
+
|
| 69 |
+
The app uses a pre-trained AnalysisGNN model automatically downloaded from Weights & Biases. The model is cached in the `./artifacts/` folder to avoid re-downloading.
|
| 70 |
+
|
| 71 |
+
## Dependencies
|
| 72 |
+
|
| 73 |
+
- `analysisgnn`: Core music analysis library
|
| 74 |
+
- `gradio`: Web interface framework
|
| 75 |
+
- `partitura`: Music processing library
|
| 76 |
+
- `torch`: Deep learning framework
|
| 77 |
+
- `pandas`: Data manipulation
|
| 78 |
+
- See `requirements.txt` for complete list
|
| 79 |
+
|
| 80 |
+
## Citation
|
| 81 |
+
|
| 82 |
+
If you use this interface or AnalysisGNN in your research, please cite:
|
| 83 |
+
|
| 84 |
+
```bibtex
|
| 85 |
+
@inproceedings{karystinaios2024analysisgnn,
|
| 86 |
+
title={AnalysisGNN: A Unified Music Analysis Model with Graph Neural Networks},
|
| 87 |
+
author={Karystinaios, Emmanouil and Hentschel, Johannes and Neuwirth, Markus and Widmer, Gerhard},
|
| 88 |
+
booktitle={International Symposium on Computer Music Multidisciplinary Research (CMMR)},
|
| 89 |
+
year={2025}
|
| 90 |
+
}
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
## License
|
| 94 |
+
|
| 95 |
+
MIT License - See the [AnalysisGNN repository](https://github.com/manoskary/analysisGNN) for more details.
|
| 96 |
+
|
| 97 |
+
## Acknowledgments
|
| 98 |
+
|
| 99 |
+
- Built with [Gradio](https://gradio.app/)
|
| 100 |
+
- Powered by [AnalysisGNN](https://github.com/manoskary/analysisGNN)
|
| 101 |
+
- Music processing with [Partitura](https://github.com/CPJKU/partitura)
|
app.py
ADDED
|
@@ -0,0 +1,488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
AnalysisGNN Gradio App
|
| 4 |
+
|
| 5 |
+
A Gradio interface for AnalysisGNN music analysis.
|
| 6 |
+
Users can upload MusicXML scores, run the model, and view results.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import numpy as np
|
| 12 |
+
import os
|
| 13 |
+
import tempfile
|
| 14 |
+
import torch
|
| 15 |
+
from pathlib import Path
|
| 16 |
+
from typing import Tuple, Optional, Dict
|
| 17 |
+
import traceback
|
| 18 |
+
import warnings
|
| 19 |
+
|
| 20 |
+
# Suppress warnings for cleaner output
|
| 21 |
+
warnings.filterwarnings('ignore')
|
| 22 |
+
|
| 23 |
+
# Import partitura and AnalysisGNN
|
| 24 |
+
import partitura as pt
|
| 25 |
+
from analysisgnn.models.analysis import ContinualAnalysisGNN
|
| 26 |
+
from analysisgnn.utils.chord_representations import available_representations
|
| 27 |
+
|
| 28 |
+
# Global model variable
|
| 29 |
+
MODEL = None
|
| 30 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
+
|
| 32 |
+
print(f"Using device: {DEVICE}")
|
| 33 |
+
if torch.cuda.is_available():
|
| 34 |
+
print(f"CUDA device: {torch.cuda.get_device_name(0)}")
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def download_wandb_checkpoint(artifact_path: str = "melkisedeath/AnalysisGNN/model-uvj2ddun:v1") -> str:
|
| 38 |
+
"""Download checkpoint from Weights & Biases, or use cached version if available."""
|
| 39 |
+
# Create artifacts directory structure
|
| 40 |
+
artifacts_dir = "checkpoint"
|
| 41 |
+
os.makedirs(artifacts_dir, exist_ok=True)
|
| 42 |
+
|
| 43 |
+
# Check if checkpoint already exists directly in artifacts/models
|
| 44 |
+
checkpoint_path = os.path.join(artifacts_dir, "model.ckpt")
|
| 45 |
+
if os.path.exists(checkpoint_path):
|
| 46 |
+
print(f"Using cached checkpoint: {checkpoint_path}")
|
| 47 |
+
return checkpoint_path
|
| 48 |
+
|
| 49 |
+
# Check for any .ckpt file in the artifacts/models directory
|
| 50 |
+
if os.path.exists(artifacts_dir):
|
| 51 |
+
for fname in os.listdir(artifacts_dir):
|
| 52 |
+
if fname.endswith('.ckpt'):
|
| 53 |
+
checkpoint_path = os.path.join(artifacts_dir, fname)
|
| 54 |
+
print(f"Using cached checkpoint: {checkpoint_path}")
|
| 55 |
+
return checkpoint_path
|
| 56 |
+
|
| 57 |
+
# Check artifact-specific subdirectory
|
| 58 |
+
artifact_dir = os.path.join(artifacts_dir, os.path.basename(artifact_path))
|
| 59 |
+
checkpoint_path = os.path.join(artifact_dir, "model.ckpt")
|
| 60 |
+
if os.path.exists(checkpoint_path):
|
| 61 |
+
print(f"Using cached checkpoint: {checkpoint_path}")
|
| 62 |
+
return checkpoint_path
|
| 63 |
+
|
| 64 |
+
# Only import and use wandb if checkpoint is not cached
|
| 65 |
+
import wandb
|
| 66 |
+
print(f"Downloading checkpoint from W&B: {artifact_path}")
|
| 67 |
+
|
| 68 |
+
# Initialize wandb in offline mode to avoid creating online runs
|
| 69 |
+
run = wandb.init(mode="offline")
|
| 70 |
+
try:
|
| 71 |
+
artifact = run.use_artifact(artifact_path, type='model')
|
| 72 |
+
artifact_dir = artifact.download(root=artifacts_dir)
|
| 73 |
+
finally:
|
| 74 |
+
wandb.finish()
|
| 75 |
+
|
| 76 |
+
# Find the checkpoint file
|
| 77 |
+
checkpoint_path = os.path.join(artifact_dir, "model.ckpt")
|
| 78 |
+
if not os.path.exists(checkpoint_path):
|
| 79 |
+
for fname in os.listdir(artifact_dir):
|
| 80 |
+
if fname.endswith('.ckpt'):
|
| 81 |
+
checkpoint_path = os.path.join(artifact_dir, fname)
|
| 82 |
+
break
|
| 83 |
+
|
| 84 |
+
return checkpoint_path
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def load_model() -> ContinualAnalysisGNN:
|
| 88 |
+
"""Load the AnalysisGNN model."""
|
| 89 |
+
global MODEL
|
| 90 |
+
|
| 91 |
+
if MODEL is None:
|
| 92 |
+
checkpoint_path = download_wandb_checkpoint()
|
| 93 |
+
print(f"Loading model from: {checkpoint_path}")
|
| 94 |
+
MODEL = ContinualAnalysisGNN.load_from_checkpoint(
|
| 95 |
+
checkpoint_path,
|
| 96 |
+
map_location=DEVICE
|
| 97 |
+
)
|
| 98 |
+
MODEL.eval()
|
| 99 |
+
MODEL.to(DEVICE)
|
| 100 |
+
print("Model loaded successfully!")
|
| 101 |
+
return MODEL
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def render_score_to_image(score: pt.score.Score, output_path: str) -> Optional[str]:
|
| 105 |
+
"""
|
| 106 |
+
Render score to image using partitura.
|
| 107 |
+
|
| 108 |
+
Parameters
|
| 109 |
+
----------
|
| 110 |
+
score : pt.score.Score
|
| 111 |
+
The score to render
|
| 112 |
+
output_path : str
|
| 113 |
+
Path to save the rendered image
|
| 114 |
+
|
| 115 |
+
Returns
|
| 116 |
+
-------
|
| 117 |
+
str or None
|
| 118 |
+
Path to the rendered image, or None if rendering failed
|
| 119 |
+
"""
|
| 120 |
+
try:
|
| 121 |
+
# Try to render to PNG using partitura
|
| 122 |
+
pt.render(score, fmt="png", out=output_path)
|
| 123 |
+
if os.path.exists(output_path):
|
| 124 |
+
return output_path
|
| 125 |
+
except Exception as e:
|
| 126 |
+
print(f"Error rendering score to PNG: {e}")
|
| 127 |
+
|
| 128 |
+
# If PNG rendering failed, try PDF
|
| 129 |
+
try:
|
| 130 |
+
pdf_path = output_path.replace('.png', '.pdf')
|
| 131 |
+
pt.render(score, fmt="pdf", out=pdf_path)
|
| 132 |
+
if os.path.exists(pdf_path):
|
| 133 |
+
# Convert PDF to PNG if possible
|
| 134 |
+
try:
|
| 135 |
+
from pdf2image import convert_from_path
|
| 136 |
+
images = convert_from_path(pdf_path)
|
| 137 |
+
if images:
|
| 138 |
+
images[0].save(output_path, 'PNG')
|
| 139 |
+
return output_path
|
| 140 |
+
except (ImportError, Exception) as e:
|
| 141 |
+
# If conversion fails, return the PDF path
|
| 142 |
+
print(f"PDF to PNG conversion failed: {e}")
|
| 143 |
+
return pdf_path
|
| 144 |
+
except Exception as e:
|
| 145 |
+
print(f"Error rendering score to PDF: {e}")
|
| 146 |
+
|
| 147 |
+
return None
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def predict_analysis(
|
| 151 |
+
model: ContinualAnalysisGNN,
|
| 152 |
+
score: pt.score.Score,
|
| 153 |
+
tasks: list
|
| 154 |
+
) -> Dict[str, np.ndarray]:
|
| 155 |
+
"""
|
| 156 |
+
Perform music analysis prediction.
|
| 157 |
+
|
| 158 |
+
Parameters
|
| 159 |
+
----------
|
| 160 |
+
model : ContinualAnalysisGNN
|
| 161 |
+
The model to use for prediction
|
| 162 |
+
score : pt.score.Score
|
| 163 |
+
The score to analyze
|
| 164 |
+
tasks : list
|
| 165 |
+
List of analysis tasks to perform
|
| 166 |
+
|
| 167 |
+
Returns
|
| 168 |
+
-------
|
| 169 |
+
dict
|
| 170 |
+
Dictionary mapping task names to predictions and confidence scores
|
| 171 |
+
"""
|
| 172 |
+
with torch.no_grad():
|
| 173 |
+
# Get predictions from model
|
| 174 |
+
predictions = model.predict(score)
|
| 175 |
+
|
| 176 |
+
# Decode predictions
|
| 177 |
+
decoded_predictions = {}
|
| 178 |
+
for task in tasks:
|
| 179 |
+
if task in predictions:
|
| 180 |
+
pred_tensor = predictions[task]
|
| 181 |
+
if len(pred_tensor.shape) > 1:
|
| 182 |
+
# Get confidence scores (probabilities)
|
| 183 |
+
pred_probs = torch.softmax(pred_tensor, dim=-1)
|
| 184 |
+
pred_onehot = torch.argmax(pred_tensor, dim=-1)
|
| 185 |
+
# Get confidence for the predicted class
|
| 186 |
+
confidence = torch.max(pred_probs, dim=-1)[0]
|
| 187 |
+
|
| 188 |
+
# Store confidence scores
|
| 189 |
+
decoded_predictions[f"{task}_confidence"] = confidence.cpu().numpy()
|
| 190 |
+
else:
|
| 191 |
+
pred_onehot = pred_tensor
|
| 192 |
+
|
| 193 |
+
# Decode using available representations
|
| 194 |
+
if task in available_representations:
|
| 195 |
+
try:
|
| 196 |
+
decoded = available_representations[task].decode(
|
| 197 |
+
pred_onehot.reshape(-1, 1)
|
| 198 |
+
)
|
| 199 |
+
# Convert to numpy array if it's a list
|
| 200 |
+
if isinstance(decoded, list):
|
| 201 |
+
decoded_predictions[task] = np.array(decoded).flatten()
|
| 202 |
+
else:
|
| 203 |
+
decoded_predictions[task] = decoded.flatten()
|
| 204 |
+
except (IndexError, ValueError) as e:
|
| 205 |
+
print(f"Warning: Error decoding {task} predictions: {e}")
|
| 206 |
+
# Fallback to raw indices
|
| 207 |
+
decoded_predictions[task] = pred_onehot.cpu().numpy()
|
| 208 |
+
else:
|
| 209 |
+
decoded_predictions[task] = pred_onehot.cpu().numpy()
|
| 210 |
+
|
| 211 |
+
# Add timing information
|
| 212 |
+
try:
|
| 213 |
+
if "onset" in predictions:
|
| 214 |
+
decoded_predictions["onset_beat"] = predictions["onset"].cpu().numpy()
|
| 215 |
+
else:
|
| 216 |
+
decoded_predictions["onset_beat"] = score.note_array()["onset_beat"]
|
| 217 |
+
except (AttributeError, KeyError, IndexError) as e:
|
| 218 |
+
print(f"Warning: Could not add onset timing: {e}")
|
| 219 |
+
|
| 220 |
+
try:
|
| 221 |
+
if "s_measure" in predictions:
|
| 222 |
+
decoded_predictions["measure"] = predictions["s_measure"].cpu().numpy()
|
| 223 |
+
else:
|
| 224 |
+
decoded_predictions["measure"] = score[0].measure_number_map(score.note_array()["onset_div"])
|
| 225 |
+
except (AttributeError, KeyError, IndexError) as e:
|
| 226 |
+
print(f"Warning: Could not add measure information: {e}")
|
| 227 |
+
|
| 228 |
+
return decoded_predictions
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def process_musicxml(
|
| 232 |
+
musicxml_file,
|
| 233 |
+
selected_tasks: list
|
| 234 |
+
) -> Tuple[Optional[str], Optional[pd.DataFrame], str]:
|
| 235 |
+
"""
|
| 236 |
+
Process a MusicXML file and return visualization and analysis results.
|
| 237 |
+
|
| 238 |
+
Parameters
|
| 239 |
+
----------
|
| 240 |
+
musicxml_file : file
|
| 241 |
+
Uploaded MusicXML file
|
| 242 |
+
selected_tasks : list
|
| 243 |
+
List of selected analysis tasks
|
| 244 |
+
|
| 245 |
+
Returns
|
| 246 |
+
-------
|
| 247 |
+
tuple
|
| 248 |
+
(image_path, dataframe, status_message)
|
| 249 |
+
"""
|
| 250 |
+
if musicxml_file is None:
|
| 251 |
+
return None, None, "Please upload a MusicXML file."
|
| 252 |
+
|
| 253 |
+
if not selected_tasks:
|
| 254 |
+
return None, None, "Please select at least one analysis task."
|
| 255 |
+
|
| 256 |
+
try:
|
| 257 |
+
# Load the model
|
| 258 |
+
status_msg = "Loading model..."
|
| 259 |
+
print(status_msg)
|
| 260 |
+
model = load_model()
|
| 261 |
+
|
| 262 |
+
# Load the score
|
| 263 |
+
status_msg = "Loading score..."
|
| 264 |
+
print(status_msg)
|
| 265 |
+
score = pt.load_musicxml(musicxml_file.name)
|
| 266 |
+
|
| 267 |
+
# Render score to image
|
| 268 |
+
status_msg = "Rendering score..."
|
| 269 |
+
print(status_msg)
|
| 270 |
+
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp_img:
|
| 271 |
+
img_path = tmp_img.name
|
| 272 |
+
|
| 273 |
+
rendered_path = render_score_to_image(score, img_path)
|
| 274 |
+
if rendered_path is None:
|
| 275 |
+
print("Note: Score rendering failed. This requires MuseScore or LilyPond to be installed.")
|
| 276 |
+
|
| 277 |
+
# Perform analysis
|
| 278 |
+
status_msg = "Running analysis..."
|
| 279 |
+
print(status_msg)
|
| 280 |
+
predictions = predict_analysis(model, score, selected_tasks)
|
| 281 |
+
|
| 282 |
+
# Create DataFrame
|
| 283 |
+
if predictions:
|
| 284 |
+
df = pd.DataFrame(predictions)
|
| 285 |
+
|
| 286 |
+
# Add note/event IDs
|
| 287 |
+
if 'note_id' not in df.columns:
|
| 288 |
+
df.insert(0, 'note_id', range(len(df)))
|
| 289 |
+
|
| 290 |
+
# Reorder columns to have timing info first, then predictions, then confidence
|
| 291 |
+
timing_cols = [col for col in ['note_id', 'onset_beat', 'measure'] if col in df.columns]
|
| 292 |
+
confidence_cols = [col for col in df.columns if col.endswith('_confidence')]
|
| 293 |
+
prediction_cols = [col for col in df.columns if col not in timing_cols and col not in confidence_cols]
|
| 294 |
+
|
| 295 |
+
# Interleave predictions with their confidence scores
|
| 296 |
+
ordered_cols = timing_cols.copy()
|
| 297 |
+
for pred_col in prediction_cols:
|
| 298 |
+
ordered_cols.append(pred_col)
|
| 299 |
+
conf_col = f"{pred_col}_confidence"
|
| 300 |
+
if conf_col in confidence_cols:
|
| 301 |
+
ordered_cols.append(conf_col)
|
| 302 |
+
|
| 303 |
+
df = df[ordered_cols]
|
| 304 |
+
|
| 305 |
+
status_msg = f"ā Analysis complete! Analyzed {len(df)} notes with {len(selected_tasks)} task(s)."
|
| 306 |
+
else:
|
| 307 |
+
df = pd.DataFrame()
|
| 308 |
+
status_msg = "ā Analysis returned no predictions."
|
| 309 |
+
|
| 310 |
+
return rendered_path, df, status_msg
|
| 311 |
+
|
| 312 |
+
except Exception as e:
|
| 313 |
+
error_msg = f"Error processing file: {str(e)}\n\n{traceback.format_exc()}"
|
| 314 |
+
print(error_msg)
|
| 315 |
+
return None, None, error_msg
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
# Define available tasks
|
| 319 |
+
AVAILABLE_TASKS = {
|
| 320 |
+
"cadence": "Cadence Detection",
|
| 321 |
+
"localkey": "Local Key",
|
| 322 |
+
"tonkey": "Tonalized Key",
|
| 323 |
+
"quality": "Chord Quality",
|
| 324 |
+
"root": "Chord Root",
|
| 325 |
+
"bass": "Bass Note",
|
| 326 |
+
"inversion": "Chord Inversion",
|
| 327 |
+
"degree1": "Primary Degree",
|
| 328 |
+
"degree2": "Secondary Degree",
|
| 329 |
+
"romanNumeral": "Roman Numeral Analysis",
|
| 330 |
+
"phrase": "Phrase Segmentation",
|
| 331 |
+
"section": "Section Detection",
|
| 332 |
+
}
|
| 333 |
+
|
| 334 |
+
# Create Gradio interface
|
| 335 |
+
with gr.Blocks(title="AnalysisGNN Music Analysis", theme=gr.themes.Soft()) as demo:
|
| 336 |
+
gr.Markdown("""
|
| 337 |
+
# šµ AnalysisGNN Music Analysis
|
| 338 |
+
|
| 339 |
+
Upload a MusicXML score to perform automatic music analysis using Graph Neural Networks.
|
| 340 |
+
|
| 341 |
+
**Supported Analysis Tasks:**
|
| 342 |
+
- Cadence Detection
|
| 343 |
+
- Key Analysis (Local & Tonalized)
|
| 344 |
+
- Harmonic Analysis (Chords, Inversions, Roman Numerals)
|
| 345 |
+
- Phrase & Section Segmentation
|
| 346 |
+
|
| 347 |
+
**Model:** Pre-trained AnalysisGNN from [manoskary/analysisGNN](https://github.com/manoskary/analysisGNN)
|
| 348 |
+
""")
|
| 349 |
+
|
| 350 |
+
with gr.Row():
|
| 351 |
+
with gr.Column(scale=1):
|
| 352 |
+
# Input section
|
| 353 |
+
gr.Markdown("### š Input")
|
| 354 |
+
file_input = gr.File(
|
| 355 |
+
label="Upload MusicXML Score",
|
| 356 |
+
file_types=[".musicxml", ".xml", ".mxl"],
|
| 357 |
+
type="filepath"
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
task_selector = gr.CheckboxGroup(
|
| 361 |
+
choices=list(AVAILABLE_TASKS.values()),
|
| 362 |
+
value=["Cadence Detection", "Local Key", "Roman Numeral Analysis"],
|
| 363 |
+
label="Select Analysis Tasks",
|
| 364 |
+
info="Choose which tasks to perform"
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
analyze_btn = gr.Button("š¼ Analyze Score", variant="primary", size="lg")
|
| 368 |
+
|
| 369 |
+
gr.Markdown("---")
|
| 370 |
+
example_btn = gr.Button("šµ Try Example (Mozart K.158)", size="sm")
|
| 371 |
+
|
| 372 |
+
with gr.Column(scale=2):
|
| 373 |
+
# Output section
|
| 374 |
+
gr.Markdown("### š Results")
|
| 375 |
+
status_output = gr.Textbox(
|
| 376 |
+
label="Status",
|
| 377 |
+
lines=2,
|
| 378 |
+
interactive=False
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
with gr.Row():
|
| 382 |
+
with gr.Column():
|
| 383 |
+
# Score visualization
|
| 384 |
+
gr.Markdown("### š¼ Score Visualization")
|
| 385 |
+
image_output = gr.Image(
|
| 386 |
+
label="Rendered Score",
|
| 387 |
+
type="filepath"
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
with gr.Row():
|
| 391 |
+
with gr.Column():
|
| 392 |
+
# Analysis results table
|
| 393 |
+
gr.Markdown("### š Analysis Results")
|
| 394 |
+
table_output = gr.Dataframe(
|
| 395 |
+
label="Analysis Output",
|
| 396 |
+
wrap=True,
|
| 397 |
+
interactive=False
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
download_btn = gr.Button("š¾ Download Results as CSV")
|
| 401 |
+
csv_output = gr.File(label="Download CSV")
|
| 402 |
+
|
| 403 |
+
# Example section
|
| 404 |
+
gr.Markdown("""
|
| 405 |
+
### š” Tips & Information
|
| 406 |
+
|
| 407 |
+
**Getting Started:**
|
| 408 |
+
- Click "Try Example" to load a Mozart quartet, or upload your own MusicXML file
|
| 409 |
+
- Select the analysis tasks you're interested in
|
| 410 |
+
- Click "Analyze Score" to run the model
|
| 411 |
+
|
| 412 |
+
**Analysis Output:**
|
| 413 |
+
The table shows note-level predictions for all selected tasks:
|
| 414 |
+
- **Onset & Measure**: Timing information
|
| 415 |
+
- **Keys**: Detected key areas (local and tonalized)
|
| 416 |
+
- **Chords**: Harmonic analysis with Roman numerals
|
| 417 |
+
- **Cadences**: Identified cadence points and types
|
| 418 |
+
|
| 419 |
+
**Score Visualization:**
|
| 420 |
+
Requires MuseScore or LilyPond for rendering. If unavailable, analysis will still work.
|
| 421 |
+
""")
|
| 422 |
+
|
| 423 |
+
# Event handlers
|
| 424 |
+
def analyze_wrapper(file, tasks_selected):
|
| 425 |
+
# Convert task names back to internal names
|
| 426 |
+
task_mapping = {v: k for k, v in AVAILABLE_TASKS.items()}
|
| 427 |
+
selected_task_keys = [task_mapping[t] for t in tasks_selected if t in task_mapping]
|
| 428 |
+
return process_musicxml(file, selected_task_keys)
|
| 429 |
+
|
| 430 |
+
def load_example():
|
| 431 |
+
"""Load example Mozart score."""
|
| 432 |
+
import urllib.request
|
| 433 |
+
|
| 434 |
+
url = "https://raw.githubusercontent.com/manoskary/humdrum-mozart-quartets/refs/heads/master/musicxml/k158-01.musicxml"
|
| 435 |
+
|
| 436 |
+
# Create artifacts directory if it doesn't exist
|
| 437 |
+
os.makedirs("./artifacts", exist_ok=True)
|
| 438 |
+
|
| 439 |
+
example_path = "./artifacts/k158-01.musicxml"
|
| 440 |
+
|
| 441 |
+
if not os.path.exists(example_path):
|
| 442 |
+
try:
|
| 443 |
+
print(f"Downloading example score from: {url}")
|
| 444 |
+
urllib.request.urlretrieve(url, example_path)
|
| 445 |
+
print(f"Example score saved to: {example_path}")
|
| 446 |
+
except Exception as e:
|
| 447 |
+
return None, f"Error downloading example: {e}"
|
| 448 |
+
|
| 449 |
+
return example_path, "Example loaded! Click 'Analyze Score' to proceed."
|
| 450 |
+
|
| 451 |
+
analyze_btn.click(
|
| 452 |
+
fn=analyze_wrapper,
|
| 453 |
+
inputs=[file_input, task_selector],
|
| 454 |
+
outputs=[image_output, table_output, status_output]
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
example_btn.click(
|
| 458 |
+
fn=load_example,
|
| 459 |
+
outputs=[file_input, status_output]
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
def save_csv(df):
|
| 463 |
+
if df is None or len(df) == 0:
|
| 464 |
+
return None
|
| 465 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=False) as tmp:
|
| 466 |
+
df.to_csv(tmp.name, index=False)
|
| 467 |
+
return tmp.name
|
| 468 |
+
|
| 469 |
+
download_btn.click(
|
| 470 |
+
fn=save_csv,
|
| 471 |
+
inputs=[table_output],
|
| 472 |
+
outputs=[csv_output]
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
# Launch the app
|
| 476 |
+
if __name__ == "__main__":
|
| 477 |
+
# Pre-load the model at startup for efficiency
|
| 478 |
+
print("=" * 50)
|
| 479 |
+
print("Initializing AnalysisGNN app...")
|
| 480 |
+
print("=" * 50)
|
| 481 |
+
print("Pre-loading model at startup...")
|
| 482 |
+
load_model()
|
| 483 |
+
print("ā Model loaded successfully!")
|
| 484 |
+
|
| 485 |
+
print("=" * 50)
|
| 486 |
+
print("Starting Gradio interface...")
|
| 487 |
+
print("=" * 50)
|
| 488 |
+
demo.launch()
|
checkpoint/model.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:53d106038fea6a5ab3d4c0a19617736dff5f0299deffaf240ebd484c11f91c67
|
| 3 |
+
size 126890023
|
requirements.txt
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# PyTorch (install first, required by other packages)
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
torchvision>=0.15.0
|
| 4 |
+
|
| 5 |
+
# PyTorch extensions (require torch to be installed)
|
| 6 |
+
pytorch-lightning>=2.0.0
|
| 7 |
+
torch-geometric>=2.3.0
|
| 8 |
+
torch-scatter>=2.1.0
|
| 9 |
+
torch-sparse>=0.6.0
|
| 10 |
+
|
| 11 |
+
# Data processing
|
| 12 |
+
numpy>=1.21.0
|
| 13 |
+
pandas>=1.5.0
|
| 14 |
+
|
| 15 |
+
# Music processing
|
| 16 |
+
partitura>=1.4.0
|
| 17 |
+
music21>=8.0.0
|
| 18 |
+
|
| 19 |
+
# Gradio and Spaces
|
| 20 |
+
gradio>=4.0.0
|
| 21 |
+
|
| 22 |
+
# Wandb for model loading
|
| 23 |
+
wandb>=0.13.0
|
| 24 |
+
|
| 25 |
+
# PDF rendering and image processing
|
| 26 |
+
reportlab>=4.0.0
|
| 27 |
+
pdf2image>=1.16.0
|
| 28 |
+
Pillow>=9.0.0
|
| 29 |
+
|
| 30 |
+
# ML utilities
|
| 31 |
+
scikit-learn>=1.1.0
|
| 32 |
+
torchmetrics>=0.11.0
|
| 33 |
+
|
| 34 |
+
# Other utilities
|
| 35 |
+
tqdm>=4.64.0
|
| 36 |
+
|
| 37 |
+
# Core AnalysisGNN dependency (install last, after all dependencies)
|
| 38 |
+
git+https://github.com/manoskary/analysisGNN.git
|