Spaces:
Runtime error
Runtime error
File size: 6,996 Bytes
ec313eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
from functools import lru_cache
from typing import List, Tuple
import numpy
from tqdm import tqdm
from facefusion import inference_manager, state_manager, wording
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
from facefusion.execution import has_execution_provider
from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.types import Detection, DownloadScope, DownloadSet, ExecutionProvider, Fps, InferencePool, ModelSet, VisionFrame
from facefusion.vision import detect_video_fps, fit_frame, read_image, read_video_frame
STREAM_COUNTER = 0
@lru_cache(maxsize = None)
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
return\
{
'nsfw_1':
{
'hashes':
{
'content_analyser':
{
'url': resolve_download_url('models-3.3.0', 'nsfw_1.hash'),
'path': resolve_relative_path('../.assets/models/nsfw_1.hash')
}
},
'sources':
{
'content_analyser':
{
'url': resolve_download_url('models-3.3.0', 'nsfw_1.onnx'),
'path': resolve_relative_path('../.assets/models/nsfw_1.onnx')
}
},
'size': (640, 640),
'mean': (0.0, 0.0, 0.0),
'standard_deviation': (1.0, 1.0, 1.0)
},
'nsfw_2':
{
'hashes':
{
'content_analyser':
{
'url': resolve_download_url('models-3.3.0', 'nsfw_2.hash'),
'path': resolve_relative_path('../.assets/models/nsfw_2.hash')
}
},
'sources':
{
'content_analyser':
{
'url': resolve_download_url('models-3.3.0', 'nsfw_2.onnx'),
'path': resolve_relative_path('../.assets/models/nsfw_2.onnx')
}
},
'size': (384, 384),
'mean': (0.5, 0.5, 0.5),
'standard_deviation': (0.5, 0.5, 0.5)
},
'nsfw_3':
{
'hashes':
{
'content_analyser':
{
'url': resolve_download_url('models-3.3.0', 'nsfw_3.hash'),
'path': resolve_relative_path('../.assets/models/nsfw_3.hash')
}
},
'sources':
{
'content_analyser':
{
'url': resolve_download_url('models-3.3.0', 'nsfw_3.onnx'),
'path': resolve_relative_path('../.assets/models/nsfw_3.onnx')
}
},
'size': (448, 448),
'mean': (0.48145466, 0.4578275, 0.40821073),
'standard_deviation': (0.26862954, 0.26130258, 0.27577711)
}
}
def get_inference_pool() -> InferencePool:
model_names = [ 'nsfw_1', 'nsfw_2', 'nsfw_3' ]
_, model_source_set = collect_model_downloads()
return inference_manager.get_inference_pool(__name__, model_names, model_source_set)
def clear_inference_pool() -> None:
model_names = [ 'nsfw_1', 'nsfw_2', 'nsfw_3' ]
inference_manager.clear_inference_pool(__name__, model_names)
def resolve_execution_providers() -> List[ExecutionProvider]:
if has_execution_provider('coreml'):
return [ 'cpu' ]
return state_manager.get_item('execution_providers')
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
model_set = create_static_model_set('full')
model_hash_set = {}
model_source_set = {}
for content_analyser_model in [ 'nsfw_1', 'nsfw_2', 'nsfw_3' ]:
model_hash_set[content_analyser_model] = model_set.get(content_analyser_model).get('hashes').get('content_analyser')
model_source_set[content_analyser_model] = model_set.get(content_analyser_model).get('sources').get('content_analyser')
return model_hash_set, model_source_set
def pre_check() -> bool:
model_hash_set, model_source_set = collect_model_downloads()
return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set)
def analyse_stream(vision_frame : VisionFrame, video_fps : Fps) -> bool:
global STREAM_COUNTER
STREAM_COUNTER = STREAM_COUNTER + 1
if STREAM_COUNTER % int(video_fps) == 0:
return analyse_frame(vision_frame)
return False
def analyse_frame(vision_frame : VisionFrame) -> bool:
return detect_nsfw(vision_frame)
@lru_cache(maxsize = None)
def analyse_image(image_path : str) -> bool:
vision_frame = read_image(image_path)
return analyse_frame(vision_frame)
@lru_cache(maxsize = None)
def analyse_video(video_path : str, trim_frame_start : int, trim_frame_end : int) -> bool:
video_fps = detect_video_fps(video_path)
frame_range = range(trim_frame_start, trim_frame_end)
rate = 0.0
total = 0
counter = 0
with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress:
for frame_number in frame_range:
if frame_number % int(video_fps) == 0:
vision_frame = read_video_frame(video_path, frame_number)
total += 1
if analyse_frame(vision_frame):
counter += 1
if counter > 0 and total > 0:
rate = counter / total * 100
progress.set_postfix(rate = rate)
progress.update()
return bool(rate > 10.0)
def detect_nsfw(vision_frame : VisionFrame) -> bool:
is_nsfw_1 = detect_with_nsfw_1(vision_frame)
is_nsfw_2 = detect_with_nsfw_2(vision_frame)
is_nsfw_3 = detect_with_nsfw_3(vision_frame)
return is_nsfw_1 and is_nsfw_2 or is_nsfw_1 and is_nsfw_3 or is_nsfw_2 and is_nsfw_3
def detect_with_nsfw_1(vision_frame : VisionFrame) -> bool:
detect_vision_frame = prepare_detect_frame(vision_frame, 'nsfw_1')
detection = forward_nsfw(detect_vision_frame, 'nsfw_1')
detection_score = numpy.max(numpy.amax(detection[:, 4:], axis = 1))
return bool(detection_score > 0.2)
def detect_with_nsfw_2(vision_frame : VisionFrame) -> bool:
detect_vision_frame = prepare_detect_frame(vision_frame, 'nsfw_2')
detection = forward_nsfw(detect_vision_frame, 'nsfw_2')
detection_score = detection[0] - detection[1]
return bool(detection_score > 0.25)
def detect_with_nsfw_3(vision_frame : VisionFrame) -> bool:
detect_vision_frame = prepare_detect_frame(vision_frame, 'nsfw_3')
detection = forward_nsfw(detect_vision_frame, 'nsfw_3')
detection_score = (detection[2] + detection[3]) - (detection[0] + detection[1])
return bool(detection_score > 10.5)
def forward_nsfw(vision_frame : VisionFrame, nsfw_model : str) -> Detection:
content_analyser = get_inference_pool().get(nsfw_model)
with conditional_thread_semaphore():
detection = content_analyser.run(None,
{
'input': vision_frame
})[0]
if nsfw_model in [ 'nsfw_2', 'nsfw_3' ]:
return detection[0]
return detection
def prepare_detect_frame(temp_vision_frame : VisionFrame, model_name : str) -> VisionFrame:
model_set = create_static_model_set('full').get(model_name)
model_size = model_set.get('size')
model_mean = model_set.get('mean')
model_standard_deviation = model_set.get('standard_deviation')
detect_vision_frame = fit_frame(temp_vision_frame, model_size)
detect_vision_frame = detect_vision_frame[:, :, ::-1] / 255.0
detect_vision_frame -= model_mean
detect_vision_frame /= model_standard_deviation
detect_vision_frame = numpy.expand_dims(detect_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
return detect_vision_frame
|