from functools import lru_cache from typing import List, Tuple import numpy from tqdm import tqdm from facefusion import inference_manager, state_manager, wording from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url from facefusion.execution import has_execution_provider from facefusion.filesystem import resolve_relative_path from facefusion.thread_helper import conditional_thread_semaphore from facefusion.types import Detection, DownloadScope, DownloadSet, ExecutionProvider, Fps, InferencePool, ModelSet, VisionFrame from facefusion.vision import detect_video_fps, fit_frame, read_image, read_video_frame STREAM_COUNTER = 0 @lru_cache(maxsize = None) def create_static_model_set(download_scope : DownloadScope) -> ModelSet: return\ { 'nsfw_1': { 'hashes': { 'content_analyser': { 'url': resolve_download_url('models-3.3.0', 'nsfw_1.hash'), 'path': resolve_relative_path('../.assets/models/nsfw_1.hash') } }, 'sources': { 'content_analyser': { 'url': resolve_download_url('models-3.3.0', 'nsfw_1.onnx'), 'path': resolve_relative_path('../.assets/models/nsfw_1.onnx') } }, 'size': (640, 640), 'mean': (0.0, 0.0, 0.0), 'standard_deviation': (1.0, 1.0, 1.0) }, 'nsfw_2': { 'hashes': { 'content_analyser': { 'url': resolve_download_url('models-3.3.0', 'nsfw_2.hash'), 'path': resolve_relative_path('../.assets/models/nsfw_2.hash') } }, 'sources': { 'content_analyser': { 'url': resolve_download_url('models-3.3.0', 'nsfw_2.onnx'), 'path': resolve_relative_path('../.assets/models/nsfw_2.onnx') } }, 'size': (384, 384), 'mean': (0.5, 0.5, 0.5), 'standard_deviation': (0.5, 0.5, 0.5) }, 'nsfw_3': { 'hashes': { 'content_analyser': { 'url': resolve_download_url('models-3.3.0', 'nsfw_3.hash'), 'path': resolve_relative_path('../.assets/models/nsfw_3.hash') } }, 'sources': { 'content_analyser': { 'url': resolve_download_url('models-3.3.0', 'nsfw_3.onnx'), 'path': resolve_relative_path('../.assets/models/nsfw_3.onnx') } }, 'size': (448, 448), 'mean': (0.48145466, 0.4578275, 0.40821073), 'standard_deviation': (0.26862954, 0.26130258, 0.27577711) } } def get_inference_pool() -> InferencePool: model_names = [ 'nsfw_1', 'nsfw_2', 'nsfw_3' ] _, model_source_set = collect_model_downloads() return inference_manager.get_inference_pool(__name__, model_names, model_source_set) def clear_inference_pool() -> None: model_names = [ 'nsfw_1', 'nsfw_2', 'nsfw_3' ] inference_manager.clear_inference_pool(__name__, model_names) def resolve_execution_providers() -> List[ExecutionProvider]: if has_execution_provider('coreml'): return [ 'cpu' ] return state_manager.get_item('execution_providers') def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]: model_set = create_static_model_set('full') model_hash_set = {} model_source_set = {} for content_analyser_model in [ 'nsfw_1', 'nsfw_2', 'nsfw_3' ]: model_hash_set[content_analyser_model] = model_set.get(content_analyser_model).get('hashes').get('content_analyser') model_source_set[content_analyser_model] = model_set.get(content_analyser_model).get('sources').get('content_analyser') return model_hash_set, model_source_set def pre_check() -> bool: model_hash_set, model_source_set = collect_model_downloads() return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set) def analyse_stream(vision_frame : VisionFrame, video_fps : Fps) -> bool: global STREAM_COUNTER STREAM_COUNTER = STREAM_COUNTER + 1 if STREAM_COUNTER % int(video_fps) == 0: return analyse_frame(vision_frame) return False def analyse_frame(vision_frame : VisionFrame) -> bool: return detect_nsfw(vision_frame) @lru_cache(maxsize = None) def analyse_image(image_path : str) -> bool: vision_frame = read_image(image_path) return analyse_frame(vision_frame) @lru_cache(maxsize = None) def analyse_video(video_path : str, trim_frame_start : int, trim_frame_end : int) -> bool: video_fps = detect_video_fps(video_path) frame_range = range(trim_frame_start, trim_frame_end) rate = 0.0 total = 0 counter = 0 with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress: for frame_number in frame_range: if frame_number % int(video_fps) == 0: vision_frame = read_video_frame(video_path, frame_number) total += 1 if analyse_frame(vision_frame): counter += 1 if counter > 0 and total > 0: rate = counter / total * 100 progress.set_postfix(rate = rate) progress.update() return bool(rate > 10.0) def detect_nsfw(vision_frame : VisionFrame) -> bool: is_nsfw_1 = detect_with_nsfw_1(vision_frame) is_nsfw_2 = detect_with_nsfw_2(vision_frame) is_nsfw_3 = detect_with_nsfw_3(vision_frame) return is_nsfw_1 and is_nsfw_2 or is_nsfw_1 and is_nsfw_3 or is_nsfw_2 and is_nsfw_3 def detect_with_nsfw_1(vision_frame : VisionFrame) -> bool: detect_vision_frame = prepare_detect_frame(vision_frame, 'nsfw_1') detection = forward_nsfw(detect_vision_frame, 'nsfw_1') detection_score = numpy.max(numpy.amax(detection[:, 4:], axis = 1)) return bool(detection_score > 0.2) def detect_with_nsfw_2(vision_frame : VisionFrame) -> bool: detect_vision_frame = prepare_detect_frame(vision_frame, 'nsfw_2') detection = forward_nsfw(detect_vision_frame, 'nsfw_2') detection_score = detection[0] - detection[1] return bool(detection_score > 0.25) def detect_with_nsfw_3(vision_frame : VisionFrame) -> bool: detect_vision_frame = prepare_detect_frame(vision_frame, 'nsfw_3') detection = forward_nsfw(detect_vision_frame, 'nsfw_3') detection_score = (detection[2] + detection[3]) - (detection[0] + detection[1]) return bool(detection_score > 10.5) def forward_nsfw(vision_frame : VisionFrame, nsfw_model : str) -> Detection: content_analyser = get_inference_pool().get(nsfw_model) with conditional_thread_semaphore(): detection = content_analyser.run(None, { 'input': vision_frame })[0] if nsfw_model in [ 'nsfw_2', 'nsfw_3' ]: return detection[0] return detection def prepare_detect_frame(temp_vision_frame : VisionFrame, model_name : str) -> VisionFrame: model_set = create_static_model_set('full').get(model_name) model_size = model_set.get('size') model_mean = model_set.get('mean') model_standard_deviation = model_set.get('standard_deviation') detect_vision_frame = fit_frame(temp_vision_frame, model_size) detect_vision_frame = detect_vision_frame[:, :, ::-1] / 255.0 detect_vision_frame -= model_mean detect_vision_frame /= model_standard_deviation detect_vision_frame = numpy.expand_dims(detect_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32) return detect_vision_frame