File size: 8,714 Bytes
d87fc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import matplotlib.pyplot as plt
import pandas as pd
from data import extract_model_data

# Layout parameters
COLUMNS = 3

# Derived constants
COLUMN_WIDTH = 100 / COLUMNS  # Each column takes 25% of width
BAR_WIDTH = COLUMN_WIDTH * 0.8  # 80% of column width for bars
BAR_MARGIN = COLUMN_WIDTH * 0.1  # 10% margin on each side

# Figure dimensions
FIGURE_WIDTH = 22  # Wider to accommodate columns and legend
MAX_HEIGHT = 14  # Maximum height in inches
MIN_HEIGHT_PER_ROW = 2.8
FIGURE_PADDING = 1

# Bar styling
BAR_HEIGHT_RATIO = 0.22  # Bar height as ratio of vertical spacing
VERTICAL_SPACING_RATIO = 0.2  # Base vertical position ratio
AMD_BAR_OFFSET = 0.25  # AMD bar offset ratio
NVIDIA_BAR_OFFSET = 0.54  # NVIDIA bar offset ratio

# Colors
COLORS = {
    'passed': '#4CAF50',
    'failed': '#E53E3E',
    'skipped': '#FFD54F',
    'error': '#8B0000',
    'empty': "#5B5B5B"
}

# Font styling
MODEL_NAME_FONT_SIZE = 16
LABEL_FONT_SIZE = 14
LABEL_OFFSET = 1  # Distance of label from bar
FAILURE_RATE_FONT_SIZE = 28


def calculate_overall_failure_rates(df: pd.DataFrame, available_models: list[str]) -> tuple[float, float]:
    """Calculate overall failure rates for AMD and NVIDIA across all models."""
    if df.empty or not available_models:
        return 0.0, 0.0
    
    total_amd_tests = 0
    total_amd_failures = 0
    total_nvidia_tests = 0
    total_nvidia_failures = 0
    
    for model_name in available_models:
        if model_name not in df.index:
            continue
            
        row = df.loc[model_name]
        amd_stats, nvidia_stats = extract_model_data(row)[:2]
        
        # AMD totals
        amd_total = amd_stats['passed'] + amd_stats['failed'] + amd_stats['error']
        if amd_total > 0:
            total_amd_tests += amd_total
            total_amd_failures += amd_stats['failed'] + amd_stats['error']
        
        # NVIDIA totals
        nvidia_total = nvidia_stats['passed'] + nvidia_stats['failed'] + nvidia_stats['error']
        if nvidia_total > 0:
            total_nvidia_tests += nvidia_total
            total_nvidia_failures += nvidia_stats['failed'] + nvidia_stats['error']
    
    amd_failure_rate = (total_amd_failures / total_amd_tests * 100) if total_amd_tests > 0 else 0.0
    nvidia_failure_rate = (total_nvidia_failures / total_nvidia_tests * 100) if total_nvidia_tests > 0 else 0.0
    
    return amd_failure_rate, nvidia_failure_rate


def draw_text_and_bar(
    label: str,
    stats: dict[str, int],
    y_bar: float,
    column_left_position: float,
    bar_height: float,
    ax: plt.Axes,
) -> None:
    """Draw a horizontal bar chart for given stats and its label on the left."""
    # Text
    label_x = column_left_position - LABEL_OFFSET
    failures_present = any(stats[category] > 0 for category in ['failed', 'error'])
    if failures_present:
        props = dict(boxstyle='round', facecolor=COLORS['failed'], alpha=0.35)
    else:
        props = dict(alpha=0)
    ax.text(
        label_x, y_bar, label, ha='right', va='center', color='#CCCCCC', fontsize=LABEL_FONT_SIZE,
        fontfamily='monospace', fontweight='normal', bbox=props
    )
    # Bar
    total = sum(stats.values())
    if total > 0:
        left = column_left_position
        for category in ['passed', 'failed', 'skipped', 'error']:
            if stats[category] > 0:
                width = stats[category] / total * BAR_WIDTH
                ax.barh(y_bar, width, left=left, height=bar_height, color=COLORS[category], alpha=0.9)
                left += width
    else:
        ax.barh(y_bar, BAR_WIDTH, left=column_left_position, height=bar_height, color=COLORS['empty'], alpha=0.9)

def create_summary_page(df: pd.DataFrame, available_models: list[str]) -> plt.Figure:
    """Create a summary page with model names and both AMD/NVIDIA test stats bars."""
    if df.empty:
        fig, ax = plt.subplots(figsize=(16, 8), facecolor='#000000')
        ax.set_facecolor('#000000')
        ax.text(0.5, 0.5, 'No data available',
                horizontalalignment='center', verticalalignment='center',
                transform=ax.transAxes, fontsize=20, color='#888888',
                fontfamily='monospace', weight='normal')
        ax.axis('off')
        return fig
    
    # Calculate overall failure rates
    amd_failure_rate, nvidia_failure_rate = calculate_overall_failure_rates(df, available_models)

    # Calculate dimensions for N-column layout
    model_count = len(available_models)
    rows = (model_count + COLUMNS - 1) // COLUMNS  # Ceiling division

    # Figure dimensions - wider for columns, height based on rows
    height_per_row = min(MIN_HEIGHT_PER_ROW, MAX_HEIGHT / max(rows, 1))
    figure_height = min(MAX_HEIGHT, rows * height_per_row + FIGURE_PADDING)

    fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, figure_height), facecolor='#000000')
    ax.set_facecolor('#000000')
    
    # Add overall failure rates at the top as a proper title
    failure_text = f"Overall Failure Rates: AMD {amd_failure_rate:.1f}%  |  NVIDIA {nvidia_failure_rate:.1f}%"
    ax.text(50, -1.25, failure_text, ha='center', va='top', 
           color='#FFFFFF', fontsize=FAILURE_RATE_FONT_SIZE,
           fontfamily='monospace', fontweight='bold')

    visible_model_count = 0
    max_y = 0

    for i, model_name in enumerate(available_models):
        if model_name not in df.index:
            continue

        row = df.loc[model_name]

        # Extract and process model data
        amd_stats, nvidia_stats = extract_model_data(row)[:2]

        # Calculate position in 4-column grid
        col = visible_model_count % COLUMNS
        row = visible_model_count // COLUMNS

        # Calculate horizontal position for this column
        col_left = col * COLUMN_WIDTH + BAR_MARGIN
        col_center = col * COLUMN_WIDTH + COLUMN_WIDTH / 2

        # Calculate vertical position for this row - start from top
        vertical_spacing = height_per_row
        y_base = (VERTICAL_SPACING_RATIO + row) * vertical_spacing
        y_model_name = y_base    # Model name above AMD bar
        y_amd_bar = y_base + vertical_spacing * AMD_BAR_OFFSET       # AMD bar
        y_nvidia_bar = y_base + vertical_spacing * NVIDIA_BAR_OFFSET    # NVIDIA bar
        max_y = max(max_y, y_nvidia_bar + vertical_spacing * 0.3)

        # Model name centered above the bars in this column
        ax.text(col_center, y_model_name, model_name.lower(),
               ha='center', va='center', color='#FFFFFF',
               fontsize=MODEL_NAME_FONT_SIZE, fontfamily='monospace', fontweight='bold')

        # AMD label and bar in this column
        bar_height = min(0.4, vertical_spacing * BAR_HEIGHT_RATIO)
        # Draw AMD bar
        draw_text_and_bar("amd", amd_stats, y_amd_bar, col_left, bar_height, ax)
        # Draw NVIDIA bar
        draw_text_and_bar("nvidia", nvidia_stats, y_nvidia_bar, col_left, bar_height, ax)

        # Increment counter for next visible model
        visible_model_count += 1


    # Add legend horizontally in bottom right corner
    patch_height = 0.3
    patch_width = 3

    legend_start_x = 68.7
    legend_y = max_y + 1
    legend_spacing = 10
    legend_font_size = 15

    # Add failure rate explanation text on the left
    # explanation_text = "Failure rate = failed / (passed + failed)"
    # ax.text(0, legend_y, explanation_text, 
    #        ha='left', va='bottom', color='#CCCCCC', 
    #        fontsize=legend_font_size, fontfamily='monospace', style='italic')
    
    # Legend entries
    legend_items = [
        ('passed', 'Passed'),
        ('failed', 'Failed'), 
        ('skipped', 'Skipped'),
    ]
    
    for i, (status, label) in enumerate(legend_items):
        x_pos = legend_start_x + i * legend_spacing
        # Small colored square
        ax.add_patch(plt.Rectangle((x_pos - 0.6, legend_y), patch_width, -patch_height,
                                 facecolor=COLORS[status], alpha=0.9))
        # Status label
        ax.text(x_pos + patch_width, legend_y, label, 
               ha='left', va='bottom', color='#CCCCCC', 
               fontsize=legend_font_size, fontfamily='monospace')

    # Style the axes to be completely invisible and span full width
    ax.set_xlim(-5, 105)  # Slightly wider to accommodate labels
    ax.set_ylim(0, max_y + 1)  # Add some padding at the top for title
    ax.set_xlabel('')
    ax.set_ylabel('')
    ax.spines['bottom'].set_visible(False)
    ax.spines['left'].set_visible(False)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.set_xticks([])
    ax.set_yticks([])
    ax.yaxis.set_inverted(True)

    # Remove all margins to make figure stick to top
    plt.tight_layout()
    return fig