Spaces:
Running
Running
File size: 8,714 Bytes
d87fc8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import matplotlib.pyplot as plt
import pandas as pd
from data import extract_model_data
# Layout parameters
COLUMNS = 3
# Derived constants
COLUMN_WIDTH = 100 / COLUMNS # Each column takes 25% of width
BAR_WIDTH = COLUMN_WIDTH * 0.8 # 80% of column width for bars
BAR_MARGIN = COLUMN_WIDTH * 0.1 # 10% margin on each side
# Figure dimensions
FIGURE_WIDTH = 22 # Wider to accommodate columns and legend
MAX_HEIGHT = 14 # Maximum height in inches
MIN_HEIGHT_PER_ROW = 2.8
FIGURE_PADDING = 1
# Bar styling
BAR_HEIGHT_RATIO = 0.22 # Bar height as ratio of vertical spacing
VERTICAL_SPACING_RATIO = 0.2 # Base vertical position ratio
AMD_BAR_OFFSET = 0.25 # AMD bar offset ratio
NVIDIA_BAR_OFFSET = 0.54 # NVIDIA bar offset ratio
# Colors
COLORS = {
'passed': '#4CAF50',
'failed': '#E53E3E',
'skipped': '#FFD54F',
'error': '#8B0000',
'empty': "#5B5B5B"
}
# Font styling
MODEL_NAME_FONT_SIZE = 16
LABEL_FONT_SIZE = 14
LABEL_OFFSET = 1 # Distance of label from bar
FAILURE_RATE_FONT_SIZE = 28
def calculate_overall_failure_rates(df: pd.DataFrame, available_models: list[str]) -> tuple[float, float]:
"""Calculate overall failure rates for AMD and NVIDIA across all models."""
if df.empty or not available_models:
return 0.0, 0.0
total_amd_tests = 0
total_amd_failures = 0
total_nvidia_tests = 0
total_nvidia_failures = 0
for model_name in available_models:
if model_name not in df.index:
continue
row = df.loc[model_name]
amd_stats, nvidia_stats = extract_model_data(row)[:2]
# AMD totals
amd_total = amd_stats['passed'] + amd_stats['failed'] + amd_stats['error']
if amd_total > 0:
total_amd_tests += amd_total
total_amd_failures += amd_stats['failed'] + amd_stats['error']
# NVIDIA totals
nvidia_total = nvidia_stats['passed'] + nvidia_stats['failed'] + nvidia_stats['error']
if nvidia_total > 0:
total_nvidia_tests += nvidia_total
total_nvidia_failures += nvidia_stats['failed'] + nvidia_stats['error']
amd_failure_rate = (total_amd_failures / total_amd_tests * 100) if total_amd_tests > 0 else 0.0
nvidia_failure_rate = (total_nvidia_failures / total_nvidia_tests * 100) if total_nvidia_tests > 0 else 0.0
return amd_failure_rate, nvidia_failure_rate
def draw_text_and_bar(
label: str,
stats: dict[str, int],
y_bar: float,
column_left_position: float,
bar_height: float,
ax: plt.Axes,
) -> None:
"""Draw a horizontal bar chart for given stats and its label on the left."""
# Text
label_x = column_left_position - LABEL_OFFSET
failures_present = any(stats[category] > 0 for category in ['failed', 'error'])
if failures_present:
props = dict(boxstyle='round', facecolor=COLORS['failed'], alpha=0.35)
else:
props = dict(alpha=0)
ax.text(
label_x, y_bar, label, ha='right', va='center', color='#CCCCCC', fontsize=LABEL_FONT_SIZE,
fontfamily='monospace', fontweight='normal', bbox=props
)
# Bar
total = sum(stats.values())
if total > 0:
left = column_left_position
for category in ['passed', 'failed', 'skipped', 'error']:
if stats[category] > 0:
width = stats[category] / total * BAR_WIDTH
ax.barh(y_bar, width, left=left, height=bar_height, color=COLORS[category], alpha=0.9)
left += width
else:
ax.barh(y_bar, BAR_WIDTH, left=column_left_position, height=bar_height, color=COLORS['empty'], alpha=0.9)
def create_summary_page(df: pd.DataFrame, available_models: list[str]) -> plt.Figure:
"""Create a summary page with model names and both AMD/NVIDIA test stats bars."""
if df.empty:
fig, ax = plt.subplots(figsize=(16, 8), facecolor='#000000')
ax.set_facecolor('#000000')
ax.text(0.5, 0.5, 'No data available',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=20, color='#888888',
fontfamily='monospace', weight='normal')
ax.axis('off')
return fig
# Calculate overall failure rates
amd_failure_rate, nvidia_failure_rate = calculate_overall_failure_rates(df, available_models)
# Calculate dimensions for N-column layout
model_count = len(available_models)
rows = (model_count + COLUMNS - 1) // COLUMNS # Ceiling division
# Figure dimensions - wider for columns, height based on rows
height_per_row = min(MIN_HEIGHT_PER_ROW, MAX_HEIGHT / max(rows, 1))
figure_height = min(MAX_HEIGHT, rows * height_per_row + FIGURE_PADDING)
fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, figure_height), facecolor='#000000')
ax.set_facecolor('#000000')
# Add overall failure rates at the top as a proper title
failure_text = f"Overall Failure Rates: AMD {amd_failure_rate:.1f}% | NVIDIA {nvidia_failure_rate:.1f}%"
ax.text(50, -1.25, failure_text, ha='center', va='top',
color='#FFFFFF', fontsize=FAILURE_RATE_FONT_SIZE,
fontfamily='monospace', fontweight='bold')
visible_model_count = 0
max_y = 0
for i, model_name in enumerate(available_models):
if model_name not in df.index:
continue
row = df.loc[model_name]
# Extract and process model data
amd_stats, nvidia_stats = extract_model_data(row)[:2]
# Calculate position in 4-column grid
col = visible_model_count % COLUMNS
row = visible_model_count // COLUMNS
# Calculate horizontal position for this column
col_left = col * COLUMN_WIDTH + BAR_MARGIN
col_center = col * COLUMN_WIDTH + COLUMN_WIDTH / 2
# Calculate vertical position for this row - start from top
vertical_spacing = height_per_row
y_base = (VERTICAL_SPACING_RATIO + row) * vertical_spacing
y_model_name = y_base # Model name above AMD bar
y_amd_bar = y_base + vertical_spacing * AMD_BAR_OFFSET # AMD bar
y_nvidia_bar = y_base + vertical_spacing * NVIDIA_BAR_OFFSET # NVIDIA bar
max_y = max(max_y, y_nvidia_bar + vertical_spacing * 0.3)
# Model name centered above the bars in this column
ax.text(col_center, y_model_name, model_name.lower(),
ha='center', va='center', color='#FFFFFF',
fontsize=MODEL_NAME_FONT_SIZE, fontfamily='monospace', fontweight='bold')
# AMD label and bar in this column
bar_height = min(0.4, vertical_spacing * BAR_HEIGHT_RATIO)
# Draw AMD bar
draw_text_and_bar("amd", amd_stats, y_amd_bar, col_left, bar_height, ax)
# Draw NVIDIA bar
draw_text_and_bar("nvidia", nvidia_stats, y_nvidia_bar, col_left, bar_height, ax)
# Increment counter for next visible model
visible_model_count += 1
# Add legend horizontally in bottom right corner
patch_height = 0.3
patch_width = 3
legend_start_x = 68.7
legend_y = max_y + 1
legend_spacing = 10
legend_font_size = 15
# Add failure rate explanation text on the left
# explanation_text = "Failure rate = failed / (passed + failed)"
# ax.text(0, legend_y, explanation_text,
# ha='left', va='bottom', color='#CCCCCC',
# fontsize=legend_font_size, fontfamily='monospace', style='italic')
# Legend entries
legend_items = [
('passed', 'Passed'),
('failed', 'Failed'),
('skipped', 'Skipped'),
]
for i, (status, label) in enumerate(legend_items):
x_pos = legend_start_x + i * legend_spacing
# Small colored square
ax.add_patch(plt.Rectangle((x_pos - 0.6, legend_y), patch_width, -patch_height,
facecolor=COLORS[status], alpha=0.9))
# Status label
ax.text(x_pos + patch_width, legend_y, label,
ha='left', va='bottom', color='#CCCCCC',
fontsize=legend_font_size, fontfamily='monospace')
# Style the axes to be completely invisible and span full width
ax.set_xlim(-5, 105) # Slightly wider to accommodate labels
ax.set_ylim(0, max_y + 1) # Add some padding at the top for title
ax.set_xlabel('')
ax.set_ylabel('')
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.set_xticks([])
ax.set_yticks([])
ax.yaxis.set_inverted(True)
# Remove all margins to make figure stick to top
plt.tight_layout()
return fig
|