Spaces:
Running
Running
import pandas as pd | |
import numpy as np | |
from datetime import datetime | |
from data import extract_model_data | |
import gradio as gr | |
def get_time_series_summary_dfs(historical_df: pd.DataFrame) -> dict: | |
"""Return dataframes for historical summary plots (failure rates, AMD tests, NVIDIA tests).""" | |
# Group by date to get daily statistics | |
daily_stats = [] | |
dates = sorted(historical_df['date'].unique()) | |
for date in dates: | |
date_data = historical_df[historical_df['date'] == date] | |
amd_passed = date_data['success_amd'].sum() if 'success_amd' in date_data.columns else 0 | |
amd_failed = (date_data['failed_multi_no_amd'].sum() + date_data['failed_single_no_amd'].sum()) if 'failed_multi_no_amd' in date_data.columns else 0 | |
amd_skipped = date_data['skipped_amd'].sum() if 'skipped_amd' in date_data.columns else 0 | |
amd_total = amd_passed + amd_failed + amd_skipped | |
amd_failure_rate = (amd_failed / amd_total * 100) if amd_total > 0 else 0 | |
nvidia_passed = date_data['success_nvidia'].sum() if 'success_nvidia' in date_data.columns else 0 | |
nvidia_failed = (date_data['failed_multi_no_nvidia'].sum() + date_data['failed_single_no_nvidia'].sum()) if 'failed_multi_no_nvidia' in date_data.columns else 0 | |
nvidia_skipped = date_data['skipped_nvidia'].sum() if 'skipped_nvidia' in date_data.columns else 0 | |
nvidia_total = nvidia_passed + nvidia_failed + nvidia_skipped | |
nvidia_failure_rate = (nvidia_failed / nvidia_total * 100) if nvidia_total > 0 else 0 | |
daily_stats.append({ | |
'date': date, | |
'amd_failure_rate': amd_failure_rate, | |
'nvidia_failure_rate': nvidia_failure_rate, | |
'amd_passed': amd_passed, | |
'amd_failed': amd_failed, | |
'amd_skipped': amd_skipped, | |
'nvidia_passed': nvidia_passed, | |
'nvidia_failed': nvidia_failed, | |
'nvidia_skipped': nvidia_skipped | |
}) | |
# Failure rate dataframe | |
failure_rate_data = [] | |
for i, stat in enumerate(daily_stats): | |
amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate'] if i > 0 else 0 | |
nvidia_change = stat['nvidia_failure_rate'] - daily_stats[i-1]['nvidia_failure_rate'] if i > 0 else 0 | |
failure_rate_data.extend([ | |
{'date': stat['date'], 'failure_rate': stat['amd_failure_rate'], 'platform': 'AMD', 'change': amd_change}, | |
{'date': stat['date'], 'failure_rate': stat['nvidia_failure_rate'], 'platform': 'NVIDIA', 'change': nvidia_change} | |
]) | |
failure_rate_df = pd.DataFrame(failure_rate_data) | |
# AMD tests dataframe | |
amd_data = [] | |
for i, stat in enumerate(daily_stats): | |
passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed'] if i > 0 else 0 | |
failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed'] if i > 0 else 0 | |
skipped_change = stat['amd_skipped'] - daily_stats[i-1]['amd_skipped'] if i > 0 else 0 | |
amd_data.extend([ | |
{'date': stat['date'], 'count': stat['amd_passed'], 'test_type': 'Passed', 'change': passed_change}, | |
{'date': stat['date'], 'count': stat['amd_failed'], 'test_type': 'Failed', 'change': failed_change}, | |
{'date': stat['date'], 'count': stat['amd_skipped'], 'test_type': 'Skipped', 'change': skipped_change} | |
]) | |
amd_df = pd.DataFrame(amd_data) | |
# NVIDIA tests dataframe | |
nvidia_data = [] | |
for i, stat in enumerate(daily_stats): | |
passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed'] if i > 0 else 0 | |
failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed'] if i > 0 else 0 | |
skipped_change = stat['nvidia_skipped'] - daily_stats[i-1]['nvidia_skipped'] if i > 0 else 0 | |
nvidia_data.extend([ | |
{'date': stat['date'], 'count': stat['nvidia_passed'], 'test_type': 'Passed', 'change': passed_change}, | |
{'date': stat['date'], 'count': stat['nvidia_failed'], 'test_type': 'Failed', 'change': failed_change}, | |
{'date': stat['date'], 'count': stat['nvidia_skipped'], 'test_type': 'Skipped', 'change': skipped_change} | |
]) | |
nvidia_df = pd.DataFrame(nvidia_data) | |
return { | |
'failure_rates_df': failure_rate_df, | |
'amd_tests_df': amd_df, | |
'nvidia_tests_df': nvidia_df, | |
} | |
def get_model_time_series_dfs(historical_df: pd.DataFrame, model_name: str) -> dict: | |
"""Return dataframes for a specific model's historical plots (AMD, NVIDIA).""" | |
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()] | |
if model_data.empty: | |
empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': [], 'change': []}) | |
return {'amd_df': empty_df.copy(), 'nvidia_df': empty_df.copy()} | |
dates = sorted(model_data['date'].unique()) | |
amd_data = [] | |
nvidia_data = [] | |
for i, date in enumerate(dates): | |
date_data = model_data[model_data['date'] == date] | |
row = date_data.iloc[0] | |
amd_passed = row.get('success_amd', 0) | |
amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0) | |
amd_skipped = row.get('skipped_amd', 0) | |
prev_row = model_data[model_data['date'] == dates[i-1]].iloc[0] if i > 0 and not model_data[model_data['date'] == dates[i-1]].empty else None | |
amd_passed_change = amd_passed - (prev_row.get('success_amd', 0) if prev_row is not None else 0) | |
amd_failed_change = amd_failed - (prev_row.get('failed_multi_no_amd', 0) + prev_row.get('failed_single_no_amd', 0) if prev_row is not None else 0) | |
amd_skipped_change = amd_skipped - (prev_row.get('skipped_amd', 0) if prev_row is not None else 0) | |
amd_data.extend([ | |
{'date': date, 'count': amd_passed, 'test_type': 'Passed', 'change': amd_passed_change}, | |
{'date': date, 'count': amd_failed, 'test_type': 'Failed', 'change': amd_failed_change}, | |
{'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': amd_skipped_change} | |
]) | |
nvidia_passed = row.get('success_nvidia', 0) | |
nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0) | |
nvidia_skipped = row.get('skipped_nvidia', 0) | |
if prev_row is not None: | |
prev_nvidia_passed = prev_row.get('success_nvidia', 0) | |
prev_nvidia_failed = prev_row.get('failed_multi_no_nvidia', 0) + prev_row.get('failed_single_no_nvidia', 0) | |
prev_nvidia_skipped = prev_row.get('skipped_nvidia', 0) | |
else: | |
prev_nvidia_passed = prev_nvidia_failed = prev_nvidia_skipped = 0 | |
nvidia_data.extend([ | |
{'date': date, 'count': nvidia_passed, 'test_type': 'Passed', 'change': nvidia_passed - prev_nvidia_passed}, | |
{'date': date, 'count': nvidia_failed, 'test_type': 'Failed', 'change': nvidia_failed - prev_nvidia_failed}, | |
{'date': date, 'count': nvidia_skipped, 'test_type': 'Skipped', 'change': nvidia_skipped - prev_nvidia_skipped} | |
]) | |
return {'amd_df': pd.DataFrame(amd_data), 'nvidia_df': pd.DataFrame(nvidia_data)} | |
def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict: | |
"""Create time-series visualization for overall failure rates over time using Gradio native plots.""" | |
if historical_df.empty or 'date' not in historical_df.columns: | |
# Return empty plots | |
empty_df = pd.DataFrame({'date': [], 'failure_rate': [], 'platform': []}) | |
return { | |
'failure_rates': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["failure_rate", "date", "change"]), | |
'amd_tests': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["count", "date", "change"]), | |
'nvidia_tests': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["count", "date", "change"]) | |
} | |
# Group by date to get daily statistics | |
daily_stats = [] | |
dates = sorted(historical_df['date'].unique()) | |
for date in dates: | |
date_data = historical_df[historical_df['date'] == date] | |
# Calculate AMD stats - use the correct column names from the data structure | |
amd_passed = date_data['success_amd'].sum() if 'success_amd' in date_data.columns else 0 | |
amd_failed = (date_data['failed_multi_no_amd'].sum() + date_data['failed_single_no_amd'].sum()) if 'failed_multi_no_amd' in date_data.columns else 0 | |
amd_skipped = date_data['skipped_amd'].sum() if 'skipped_amd' in date_data.columns else 0 | |
amd_total = amd_passed + amd_failed + amd_skipped | |
amd_failure_rate = (amd_failed / amd_total * 100) if amd_total > 0 else 0 | |
# Calculate NVIDIA stats - use the correct column names from the data structure | |
nvidia_passed = date_data['success_nvidia'].sum() if 'success_nvidia' in date_data.columns else 0 | |
nvidia_failed = (date_data['failed_multi_no_nvidia'].sum() + date_data['failed_single_no_nvidia'].sum()) if 'failed_multi_no_nvidia' in date_data.columns else 0 | |
nvidia_skipped = date_data['skipped_nvidia'].sum() if 'skipped_nvidia' in date_data.columns else 0 | |
nvidia_total = nvidia_passed + nvidia_failed + nvidia_skipped | |
nvidia_failure_rate = (nvidia_failed / nvidia_total * 100) if nvidia_total > 0 else 0 | |
daily_stats.append({ | |
'date': date, | |
'amd_failure_rate': amd_failure_rate, | |
'nvidia_failure_rate': nvidia_failure_rate, | |
'amd_passed': amd_passed, | |
'amd_failed': amd_failed, | |
'amd_skipped': amd_skipped, | |
'nvidia_passed': nvidia_passed, | |
'nvidia_failed': nvidia_failed, | |
'nvidia_skipped': nvidia_skipped | |
}) | |
# Create failure rate data | |
failure_rate_data = [] | |
for i, stat in enumerate(daily_stats): | |
# Calculate change from previous point | |
amd_change = 0 | |
nvidia_change = 0 | |
if i > 0: | |
amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate'] | |
nvidia_change = stat['nvidia_failure_rate'] - daily_stats[i-1]['nvidia_failure_rate'] | |
failure_rate_data.extend([ | |
{'date': stat['date'], 'failure_rate': stat['amd_failure_rate'], 'platform': 'AMD', 'change': amd_change}, | |
{'date': stat['date'], 'failure_rate': stat['nvidia_failure_rate'], 'platform': 'NVIDIA', 'change': nvidia_change} | |
]) | |
failure_rate_df = pd.DataFrame(failure_rate_data) | |
# Create AMD test results data | |
amd_data = [] | |
for i, stat in enumerate(daily_stats): | |
# Calculate change from previous point for each test type | |
passed_change = 0 | |
failed_change = 0 | |
skipped_change = 0 | |
if i > 0: | |
passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed'] | |
failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed'] | |
skipped_change = stat['amd_skipped'] - daily_stats[i-1]['amd_skipped'] | |
amd_data.extend([ | |
{'date': stat['date'], 'count': stat['amd_passed'], 'test_type': 'Passed', 'change': passed_change}, | |
{'date': stat['date'], 'count': stat['amd_failed'], 'test_type': 'Failed', 'change': failed_change}, | |
{'date': stat['date'], 'count': stat['amd_skipped'], 'test_type': 'Skipped', 'change': skipped_change} | |
]) | |
amd_df = pd.DataFrame(amd_data) | |
# Create NVIDIA test results data | |
nvidia_data = [] | |
for i, stat in enumerate(daily_stats): | |
# Calculate change from previous point for each test type | |
passed_change = 0 | |
failed_change = 0 | |
skipped_change = 0 | |
if i > 0: | |
passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed'] | |
failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed'] | |
skipped_change = stat['nvidia_skipped'] - daily_stats[i-1]['nvidia_skipped'] | |
nvidia_data.extend([ | |
{'date': stat['date'], 'count': stat['nvidia_passed'], 'test_type': 'Passed', 'change': passed_change}, | |
{'date': stat['date'], 'count': stat['nvidia_failed'], 'test_type': 'Failed', 'change': failed_change}, | |
{'date': stat['date'], 'count': stat['nvidia_skipped'], 'test_type': 'Skipped', 'change': skipped_change} | |
]) | |
nvidia_df = pd.DataFrame(nvidia_data) | |
return { | |
'failure_rates': gr.LinePlot( | |
failure_rate_df, | |
x="date", | |
y="failure_rate", | |
color="platform", | |
color_map={"AMD": "#FF6B6B", "NVIDIA": "#4ECDC4"}, | |
title="Overall Failure Rates Over Time", | |
tooltip=["failure_rate", "date", "change"], | |
height=300, | |
x_label_angle=45, | |
y_title="Failure Rate (%)" | |
), | |
'amd_tests': gr.LinePlot( | |
amd_df, | |
x="date", | |
y="count", | |
color="test_type", | |
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"}, | |
title="AMD Test Results Over Time", | |
tooltip=["count", "date", "change"], | |
height=300, | |
x_label_angle=45, | |
y_title="Number of Tests" | |
), | |
'nvidia_tests': gr.LinePlot( | |
nvidia_df, | |
x="date", | |
y="count", | |
color="test_type", | |
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"}, | |
title="NVIDIA Test Results Over Time", | |
tooltip=["count", "date", "change"], | |
height=300, | |
x_label_angle=45, | |
y_title="Number of Tests" | |
) | |
} | |
def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str) -> dict: | |
"""Create time-series visualization for a specific model using Gradio native plots.""" | |
if historical_df.empty or 'date' not in historical_df.columns: | |
# Return empty plots | |
empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': []}) | |
return { | |
'amd_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - AMD Results Over Time", tooltip=["count", "date", "change"]), | |
'nvidia_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - NVIDIA Results Over Time", tooltip=["count", "date", "change"]) | |
} | |
# Filter data for the specific model (model_name is the index) | |
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()] | |
if model_data.empty: | |
# Return empty plots | |
empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': []}) | |
return { | |
'amd_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - AMD Results Over Time", tooltip=["count", "date", "change"]), | |
'nvidia_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - NVIDIA Results Over Time", tooltip=["count", "date", "change"]) | |
} | |
# Group by date | |
dates = sorted(model_data['date'].unique()) | |
amd_data = [] | |
nvidia_data = [] | |
for i, date in enumerate(dates): | |
date_data = model_data[model_data['date'] == date] | |
if not date_data.empty: | |
# Get the first row for this date (should be only one) | |
row = date_data.iloc[0] | |
# AMD data - use the correct column names from the data structure | |
amd_passed = row.get('success_amd', 0) | |
amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0) | |
amd_skipped = row.get('skipped_amd', 0) | |
# Calculate change from previous point | |
passed_change = 0 | |
failed_change = 0 | |
skipped_change = 0 | |
if i > 0: | |
prev_date_data = model_data[model_data['date'] == dates[i-1]] | |
if not prev_date_data.empty: | |
prev_row = prev_date_data.iloc[0] | |
prev_amd_passed = prev_row.get('success_amd', 0) | |
prev_amd_failed = prev_row.get('failed_multi_no_amd', 0) + prev_row.get('failed_single_no_amd', 0) | |
prev_amd_skipped = prev_row.get('skipped_amd', 0) | |
passed_change = amd_passed - prev_amd_passed | |
failed_change = amd_failed - prev_amd_failed | |
skipped_change = amd_skipped - prev_amd_skipped | |
amd_data.extend([ | |
{'date': date, 'count': amd_passed, 'test_type': 'Passed', 'change': passed_change}, | |
{'date': date, 'count': amd_failed, 'test_type': 'Failed', 'change': failed_change}, | |
{'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': skipped_change} | |
]) | |
# NVIDIA data - use the correct column names from the data structure | |
nvidia_passed = row.get('success_nvidia', 0) | |
nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0) | |
nvidia_skipped = row.get('skipped_nvidia', 0) | |
# Calculate change from previous point for NVIDIA | |
nvidia_passed_change = 0 | |
nvidia_failed_change = 0 | |
nvidia_skipped_change = 0 | |
if i > 0: | |
prev_date_data = model_data[model_data['date'] == dates[i-1]] | |
if not prev_date_data.empty: | |
prev_row = prev_date_data.iloc[0] | |
prev_nvidia_passed = prev_row.get('success_nvidia', 0) | |
prev_nvidia_failed = prev_row.get('failed_multi_no_nvidia', 0) + prev_row.get('failed_single_no_nvidia', 0) | |
prev_nvidia_skipped = prev_row.get('skipped_nvidia', 0) | |
nvidia_passed_change = nvidia_passed - prev_nvidia_passed | |
nvidia_failed_change = nvidia_failed - prev_nvidia_failed | |
nvidia_skipped_change = nvidia_skipped - prev_nvidia_skipped | |
nvidia_data.extend([ | |
{'date': date, 'count': nvidia_passed, 'test_type': 'Passed', 'change': nvidia_passed_change}, | |
{'date': date, 'count': nvidia_failed, 'test_type': 'Failed', 'change': nvidia_failed_change}, | |
{'date': date, 'count': nvidia_skipped, 'test_type': 'Skipped', 'change': nvidia_skipped_change} | |
]) | |
amd_df = pd.DataFrame(amd_data) | |
nvidia_df = pd.DataFrame(nvidia_data) | |
return { | |
'amd_plot': gr.LinePlot( | |
amd_df, | |
x="date", | |
y="count", | |
color="test_type", | |
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"}, | |
title=f"{model_name.upper()} - AMD Results Over Time", | |
x_label_angle=45, | |
y_title="Number of Tests", | |
height=300, | |
tooltip=["count", "date", "change"] | |
), | |
'nvidia_plot': gr.LinePlot( | |
nvidia_df, | |
x="date", | |
y="count", | |
color="test_type", | |
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"}, | |
title=f"{model_name.upper()} - NVIDIA Results Over Time", | |
x_label_angle=45, | |
y_title="Number of Tests", | |
height=300, | |
tooltip=["count", "date", "change"] | |
) | |
} | |