Tcid / time_series_gradio.py
manueldeprada's picture
Upload folder using huggingface_hub
84cf73f verified
import pandas as pd
import numpy as np
from datetime import datetime
from data import extract_model_data
import gradio as gr
def get_time_series_summary_dfs(historical_df: pd.DataFrame) -> dict:
"""Return dataframes for historical summary plots (failure rates, AMD tests, NVIDIA tests)."""
# Group by date to get daily statistics
daily_stats = []
dates = sorted(historical_df['date'].unique())
for date in dates:
date_data = historical_df[historical_df['date'] == date]
amd_passed = date_data['success_amd'].sum() if 'success_amd' in date_data.columns else 0
amd_failed = (date_data['failed_multi_no_amd'].sum() + date_data['failed_single_no_amd'].sum()) if 'failed_multi_no_amd' in date_data.columns else 0
amd_skipped = date_data['skipped_amd'].sum() if 'skipped_amd' in date_data.columns else 0
amd_total = amd_passed + amd_failed + amd_skipped
amd_failure_rate = (amd_failed / amd_total * 100) if amd_total > 0 else 0
nvidia_passed = date_data['success_nvidia'].sum() if 'success_nvidia' in date_data.columns else 0
nvidia_failed = (date_data['failed_multi_no_nvidia'].sum() + date_data['failed_single_no_nvidia'].sum()) if 'failed_multi_no_nvidia' in date_data.columns else 0
nvidia_skipped = date_data['skipped_nvidia'].sum() if 'skipped_nvidia' in date_data.columns else 0
nvidia_total = nvidia_passed + nvidia_failed + nvidia_skipped
nvidia_failure_rate = (nvidia_failed / nvidia_total * 100) if nvidia_total > 0 else 0
daily_stats.append({
'date': date,
'amd_failure_rate': amd_failure_rate,
'nvidia_failure_rate': nvidia_failure_rate,
'amd_passed': amd_passed,
'amd_failed': amd_failed,
'amd_skipped': amd_skipped,
'nvidia_passed': nvidia_passed,
'nvidia_failed': nvidia_failed,
'nvidia_skipped': nvidia_skipped
})
# Failure rate dataframe
failure_rate_data = []
for i, stat in enumerate(daily_stats):
amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate'] if i > 0 else 0
nvidia_change = stat['nvidia_failure_rate'] - daily_stats[i-1]['nvidia_failure_rate'] if i > 0 else 0
failure_rate_data.extend([
{'date': stat['date'], 'failure_rate': stat['amd_failure_rate'], 'platform': 'AMD', 'change': amd_change},
{'date': stat['date'], 'failure_rate': stat['nvidia_failure_rate'], 'platform': 'NVIDIA', 'change': nvidia_change}
])
failure_rate_df = pd.DataFrame(failure_rate_data)
# AMD tests dataframe
amd_data = []
for i, stat in enumerate(daily_stats):
passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed'] if i > 0 else 0
failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed'] if i > 0 else 0
skipped_change = stat['amd_skipped'] - daily_stats[i-1]['amd_skipped'] if i > 0 else 0
amd_data.extend([
{'date': stat['date'], 'count': stat['amd_passed'], 'test_type': 'Passed', 'change': passed_change},
{'date': stat['date'], 'count': stat['amd_failed'], 'test_type': 'Failed', 'change': failed_change},
{'date': stat['date'], 'count': stat['amd_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
])
amd_df = pd.DataFrame(amd_data)
# NVIDIA tests dataframe
nvidia_data = []
for i, stat in enumerate(daily_stats):
passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed'] if i > 0 else 0
failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed'] if i > 0 else 0
skipped_change = stat['nvidia_skipped'] - daily_stats[i-1]['nvidia_skipped'] if i > 0 else 0
nvidia_data.extend([
{'date': stat['date'], 'count': stat['nvidia_passed'], 'test_type': 'Passed', 'change': passed_change},
{'date': stat['date'], 'count': stat['nvidia_failed'], 'test_type': 'Failed', 'change': failed_change},
{'date': stat['date'], 'count': stat['nvidia_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
])
nvidia_df = pd.DataFrame(nvidia_data)
return {
'failure_rates_df': failure_rate_df,
'amd_tests_df': amd_df,
'nvidia_tests_df': nvidia_df,
}
def get_model_time_series_dfs(historical_df: pd.DataFrame, model_name: str) -> dict:
"""Return dataframes for a specific model's historical plots (AMD, NVIDIA)."""
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
if model_data.empty:
empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': [], 'change': []})
return {'amd_df': empty_df.copy(), 'nvidia_df': empty_df.copy()}
dates = sorted(model_data['date'].unique())
amd_data = []
nvidia_data = []
for i, date in enumerate(dates):
date_data = model_data[model_data['date'] == date]
row = date_data.iloc[0]
amd_passed = row.get('success_amd', 0)
amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0)
amd_skipped = row.get('skipped_amd', 0)
prev_row = model_data[model_data['date'] == dates[i-1]].iloc[0] if i > 0 and not model_data[model_data['date'] == dates[i-1]].empty else None
amd_passed_change = amd_passed - (prev_row.get('success_amd', 0) if prev_row is not None else 0)
amd_failed_change = amd_failed - (prev_row.get('failed_multi_no_amd', 0) + prev_row.get('failed_single_no_amd', 0) if prev_row is not None else 0)
amd_skipped_change = amd_skipped - (prev_row.get('skipped_amd', 0) if prev_row is not None else 0)
amd_data.extend([
{'date': date, 'count': amd_passed, 'test_type': 'Passed', 'change': amd_passed_change},
{'date': date, 'count': amd_failed, 'test_type': 'Failed', 'change': amd_failed_change},
{'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': amd_skipped_change}
])
nvidia_passed = row.get('success_nvidia', 0)
nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0)
nvidia_skipped = row.get('skipped_nvidia', 0)
if prev_row is not None:
prev_nvidia_passed = prev_row.get('success_nvidia', 0)
prev_nvidia_failed = prev_row.get('failed_multi_no_nvidia', 0) + prev_row.get('failed_single_no_nvidia', 0)
prev_nvidia_skipped = prev_row.get('skipped_nvidia', 0)
else:
prev_nvidia_passed = prev_nvidia_failed = prev_nvidia_skipped = 0
nvidia_data.extend([
{'date': date, 'count': nvidia_passed, 'test_type': 'Passed', 'change': nvidia_passed - prev_nvidia_passed},
{'date': date, 'count': nvidia_failed, 'test_type': 'Failed', 'change': nvidia_failed - prev_nvidia_failed},
{'date': date, 'count': nvidia_skipped, 'test_type': 'Skipped', 'change': nvidia_skipped - prev_nvidia_skipped}
])
return {'amd_df': pd.DataFrame(amd_data), 'nvidia_df': pd.DataFrame(nvidia_data)}
def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
"""Create time-series visualization for overall failure rates over time using Gradio native plots."""
if historical_df.empty or 'date' not in historical_df.columns:
# Return empty plots
empty_df = pd.DataFrame({'date': [], 'failure_rate': [], 'platform': []})
return {
'failure_rates': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["failure_rate", "date", "change"]),
'amd_tests': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["count", "date", "change"]),
'nvidia_tests': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["count", "date", "change"])
}
# Group by date to get daily statistics
daily_stats = []
dates = sorted(historical_df['date'].unique())
for date in dates:
date_data = historical_df[historical_df['date'] == date]
# Calculate AMD stats - use the correct column names from the data structure
amd_passed = date_data['success_amd'].sum() if 'success_amd' in date_data.columns else 0
amd_failed = (date_data['failed_multi_no_amd'].sum() + date_data['failed_single_no_amd'].sum()) if 'failed_multi_no_amd' in date_data.columns else 0
amd_skipped = date_data['skipped_amd'].sum() if 'skipped_amd' in date_data.columns else 0
amd_total = amd_passed + amd_failed + amd_skipped
amd_failure_rate = (amd_failed / amd_total * 100) if amd_total > 0 else 0
# Calculate NVIDIA stats - use the correct column names from the data structure
nvidia_passed = date_data['success_nvidia'].sum() if 'success_nvidia' in date_data.columns else 0
nvidia_failed = (date_data['failed_multi_no_nvidia'].sum() + date_data['failed_single_no_nvidia'].sum()) if 'failed_multi_no_nvidia' in date_data.columns else 0
nvidia_skipped = date_data['skipped_nvidia'].sum() if 'skipped_nvidia' in date_data.columns else 0
nvidia_total = nvidia_passed + nvidia_failed + nvidia_skipped
nvidia_failure_rate = (nvidia_failed / nvidia_total * 100) if nvidia_total > 0 else 0
daily_stats.append({
'date': date,
'amd_failure_rate': amd_failure_rate,
'nvidia_failure_rate': nvidia_failure_rate,
'amd_passed': amd_passed,
'amd_failed': amd_failed,
'amd_skipped': amd_skipped,
'nvidia_passed': nvidia_passed,
'nvidia_failed': nvidia_failed,
'nvidia_skipped': nvidia_skipped
})
# Create failure rate data
failure_rate_data = []
for i, stat in enumerate(daily_stats):
# Calculate change from previous point
amd_change = 0
nvidia_change = 0
if i > 0:
amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate']
nvidia_change = stat['nvidia_failure_rate'] - daily_stats[i-1]['nvidia_failure_rate']
failure_rate_data.extend([
{'date': stat['date'], 'failure_rate': stat['amd_failure_rate'], 'platform': 'AMD', 'change': amd_change},
{'date': stat['date'], 'failure_rate': stat['nvidia_failure_rate'], 'platform': 'NVIDIA', 'change': nvidia_change}
])
failure_rate_df = pd.DataFrame(failure_rate_data)
# Create AMD test results data
amd_data = []
for i, stat in enumerate(daily_stats):
# Calculate change from previous point for each test type
passed_change = 0
failed_change = 0
skipped_change = 0
if i > 0:
passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed']
failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed']
skipped_change = stat['amd_skipped'] - daily_stats[i-1]['amd_skipped']
amd_data.extend([
{'date': stat['date'], 'count': stat['amd_passed'], 'test_type': 'Passed', 'change': passed_change},
{'date': stat['date'], 'count': stat['amd_failed'], 'test_type': 'Failed', 'change': failed_change},
{'date': stat['date'], 'count': stat['amd_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
])
amd_df = pd.DataFrame(amd_data)
# Create NVIDIA test results data
nvidia_data = []
for i, stat in enumerate(daily_stats):
# Calculate change from previous point for each test type
passed_change = 0
failed_change = 0
skipped_change = 0
if i > 0:
passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed']
failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed']
skipped_change = stat['nvidia_skipped'] - daily_stats[i-1]['nvidia_skipped']
nvidia_data.extend([
{'date': stat['date'], 'count': stat['nvidia_passed'], 'test_type': 'Passed', 'change': passed_change},
{'date': stat['date'], 'count': stat['nvidia_failed'], 'test_type': 'Failed', 'change': failed_change},
{'date': stat['date'], 'count': stat['nvidia_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
])
nvidia_df = pd.DataFrame(nvidia_data)
return {
'failure_rates': gr.LinePlot(
failure_rate_df,
x="date",
y="failure_rate",
color="platform",
color_map={"AMD": "#FF6B6B", "NVIDIA": "#4ECDC4"},
title="Overall Failure Rates Over Time",
tooltip=["failure_rate", "date", "change"],
height=300,
x_label_angle=45,
y_title="Failure Rate (%)"
),
'amd_tests': gr.LinePlot(
amd_df,
x="date",
y="count",
color="test_type",
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
title="AMD Test Results Over Time",
tooltip=["count", "date", "change"],
height=300,
x_label_angle=45,
y_title="Number of Tests"
),
'nvidia_tests': gr.LinePlot(
nvidia_df,
x="date",
y="count",
color="test_type",
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
title="NVIDIA Test Results Over Time",
tooltip=["count", "date", "change"],
height=300,
x_label_angle=45,
y_title="Number of Tests"
)
}
def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str) -> dict:
"""Create time-series visualization for a specific model using Gradio native plots."""
if historical_df.empty or 'date' not in historical_df.columns:
# Return empty plots
empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': []})
return {
'amd_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - AMD Results Over Time", tooltip=["count", "date", "change"]),
'nvidia_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - NVIDIA Results Over Time", tooltip=["count", "date", "change"])
}
# Filter data for the specific model (model_name is the index)
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
if model_data.empty:
# Return empty plots
empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': []})
return {
'amd_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - AMD Results Over Time", tooltip=["count", "date", "change"]),
'nvidia_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - NVIDIA Results Over Time", tooltip=["count", "date", "change"])
}
# Group by date
dates = sorted(model_data['date'].unique())
amd_data = []
nvidia_data = []
for i, date in enumerate(dates):
date_data = model_data[model_data['date'] == date]
if not date_data.empty:
# Get the first row for this date (should be only one)
row = date_data.iloc[0]
# AMD data - use the correct column names from the data structure
amd_passed = row.get('success_amd', 0)
amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0)
amd_skipped = row.get('skipped_amd', 0)
# Calculate change from previous point
passed_change = 0
failed_change = 0
skipped_change = 0
if i > 0:
prev_date_data = model_data[model_data['date'] == dates[i-1]]
if not prev_date_data.empty:
prev_row = prev_date_data.iloc[0]
prev_amd_passed = prev_row.get('success_amd', 0)
prev_amd_failed = prev_row.get('failed_multi_no_amd', 0) + prev_row.get('failed_single_no_amd', 0)
prev_amd_skipped = prev_row.get('skipped_amd', 0)
passed_change = amd_passed - prev_amd_passed
failed_change = amd_failed - prev_amd_failed
skipped_change = amd_skipped - prev_amd_skipped
amd_data.extend([
{'date': date, 'count': amd_passed, 'test_type': 'Passed', 'change': passed_change},
{'date': date, 'count': amd_failed, 'test_type': 'Failed', 'change': failed_change},
{'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': skipped_change}
])
# NVIDIA data - use the correct column names from the data structure
nvidia_passed = row.get('success_nvidia', 0)
nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0)
nvidia_skipped = row.get('skipped_nvidia', 0)
# Calculate change from previous point for NVIDIA
nvidia_passed_change = 0
nvidia_failed_change = 0
nvidia_skipped_change = 0
if i > 0:
prev_date_data = model_data[model_data['date'] == dates[i-1]]
if not prev_date_data.empty:
prev_row = prev_date_data.iloc[0]
prev_nvidia_passed = prev_row.get('success_nvidia', 0)
prev_nvidia_failed = prev_row.get('failed_multi_no_nvidia', 0) + prev_row.get('failed_single_no_nvidia', 0)
prev_nvidia_skipped = prev_row.get('skipped_nvidia', 0)
nvidia_passed_change = nvidia_passed - prev_nvidia_passed
nvidia_failed_change = nvidia_failed - prev_nvidia_failed
nvidia_skipped_change = nvidia_skipped - prev_nvidia_skipped
nvidia_data.extend([
{'date': date, 'count': nvidia_passed, 'test_type': 'Passed', 'change': nvidia_passed_change},
{'date': date, 'count': nvidia_failed, 'test_type': 'Failed', 'change': nvidia_failed_change},
{'date': date, 'count': nvidia_skipped, 'test_type': 'Skipped', 'change': nvidia_skipped_change}
])
amd_df = pd.DataFrame(amd_data)
nvidia_df = pd.DataFrame(nvidia_data)
return {
'amd_plot': gr.LinePlot(
amd_df,
x="date",
y="count",
color="test_type",
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
title=f"{model_name.upper()} - AMD Results Over Time",
x_label_angle=45,
y_title="Number of Tests",
height=300,
tooltip=["count", "date", "change"]
),
'nvidia_plot': gr.LinePlot(
nvidia_df,
x="date",
y="count",
color="test_type",
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
title=f"{model_name.upper()} - NVIDIA Results Over Time",
x_label_angle=45,
y_title="Number of Tests",
height=300,
tooltip=["count", "date", "change"]
)
}